Use this URL to cite or link to this record in EThOS:
Title: Local accuracy and global consistency for efficient SLAM
Author: Strasdat, Hauke
ISNI:       0000 0004 2732 5024
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is concerned with the problem of Simultaneous Localisation and Mapping (SLAM) using visual data only. Given the video stream of a moving camera, we wish to estimate the structure of the environment and the motion of the device most accurately and in real-time. Two effective approaches were presented in the past. Filtering methods marginalise out past poses and summarise the information gained over time with a probability distribution. Keyframe methods rely on the optimisation approach of bundle adjustment, but computationally must select only a small number of past frames to process. We perform a rigorous comparison between the two approaches for visual SLAM. Especially, we show that accuracy comes from a large number of points, while the number of intermediate frames only has a minor impact. We conclude that keyframe bundle adjustment is superior to ltering due to a smaller computational cost. Based on these experimental results, we develop an efficient framework for large-scale visual SLAM using the keyframe strategy. We demonstrate that SLAM using a single camera does not only drift in rotation and translation, but also in scale. In particular, we perform large-scale loop closure correction using a novel variant of pose-graph optimisation which also takes scale drift into account. Starting from this two stage approach which tackles local motion estimation and loop closures separately, we develop a unified framework for real-time visual SLAM. By employing a novel double window scheme, we present a constant-time approach which enables the local accuracy of bundle adjustment while ensuring global consistency. Furthermore, we suggest a new scheme for local registration using metric loop closures and present several improvements for the visual front-end of SLAM. Our contributions are evaluated exhaustively on a number of synthetic experiments and real-image data-set from single cameras and range imaging devices.
Supervisor: Davison, Andrew ; Edwards, Eddie Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral