Use this URL to cite or link to this record in EThOS:
Title: Inertial navigation aided by simultaneous localization and mapping
Author: Sazdovski, V.
ISNI:       0000 0004 2729 9954
Awarding Body: Cranfield University
Current Institution: Cranfield University
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Unmanned aerial vehicles technologies are getting smaller and cheaper to use and the challenges of payload limitation in unmanned aerial vehicles are being overcome. Integrated navigation system design requires selection of set of sensors and computation power that provides reliable and accurate navigation parameters (position, velocity and attitude) with high update rates and bandwidth in small and cost effective manner. Many of today’s operational unmanned aerial vehicles navigation systems rely on inertial sensors as a primary measurement source. Inertial Navigation alone however suffers from slow divergence with time. This divergence is often compensated for by employing some additional source of navigation information external to Inertial Navigation. From the 1990’s to the present day Global Positioning System has been the dominant navigation aid for Inertial Navigation. In a number of scenarios, Global Positioning System measurements may be completely unavailable or they simply may not be precise (or reliable) enough to be used to adequately update the Inertial Navigation hence alternative methods have seen great attention. Aiding Inertial Navigation with vision sensors has been the favoured solution over the past several years. Inertial and vision sensors with their complementary characteristics have the potential to answer the requirements for reliable and accurate navigation parameters. In this thesis we address Inertial Navigation position divergence. The information for updating the position comes from combination of vision and motion. When using such a combination many of the difficulties of the vision sensors (relative depth, geometry and size of objects, image blur and etc.) can be circumvented. Motion grants the vision sensors with many cues that can help better to acquire information about the environment, for instance creating a precise map of the environment and localize within the environment. We propose changes to the Simultaneous Localization and Mapping augmented state vector in order to take repeated measurements of the map point. We show that these repeated measurements with certain manoeuvres (motion) around or by the map point are crucial for constraining the Inertial Navigation position divergence (bounded estimation error) while manoeuvring in vicinity of the map point. This eliminates some of the uncertainty of the map point estimates i.e. it reduces the covariance of the map points estimates. This concept brings different parameterization (feature initialisation) of the map points in Simultaneous Localization and Mapping and we refer to it as concept of aiding Inertial Navigation by Simultaneous Localization and Mapping. We show that making such an integrated navigation system requires coordination with the guidance and control measurements and the vehicle task itself for performing the required vehicle manoeuvres (motion) and achieving better navigation accuracy. This fact brings new challenges to the practical design of these modern jam proof Global Positioning System free autonomous navigation systems. Further to the concept of aiding Inertial Navigation by Simultaneous Localization and Mapping we have investigated how a bearing only sensor such as single camera can be used for aiding Inertial Navigation. The results of the concept of Inertial Navigation aided by Simultaneous Localization and Mapping were used. New parameterization of the map point in Bearing Only Simultaneous Localization and Mapping is proposed. Because of the number of significant problems that appear when implementing the Extended Kalman Filter in Inertial Navigation aided by Bearing Only Simultaneous Localization and Mapping other algorithms such as Iterated Extended Kalman Filter, Unscented Kalman Filter and Particle Filters were implemented. From the results obtained, the conclusion can be drawn that the nonlinear filters should be the choice of estimators for this application.
Supervisor: Silson, P. M. G. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available