Use this URL to cite or link to this record in EThOS:
Title: Imaging functional and structural networks in the human epileptic brain
Author: Vulliémoz, S.
ISNI:       0000 0004 2728 7646
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Epileptic activity in the brain arises from dysfunctional neuronal networks involving cortical and subcortical grey matter as well as their connections via white matter fibres. Physiological brain networks can be affected by the structural abnormalities causing the epileptic activity, or by the epileptic activity itself. A better knowledge of physiological and pathological brain networks in patients with epilepsy is critical for a better understanding the patterns of seizure generation, propagation and termination as well as the alteration of physiological brain networks by a chronic neurological disorder. Moreover, the identification of pathological and physiological networks in an individual subject is critical for the planning of epilepsy surgery aiming at resection or at least interruption of the epileptic network while sparing physiological networks which have potentially been remodelled by the disease. This work describes the combination of neuroimaging methods to study the functional epileptic networks in the brain, structural connectivity changes of the motor networks in patients with localisation-related or generalised epilepsy and finally structural connectivity of the epileptic network. The combination between EEG source imaging and simultaneous EEG-fMRI recordings allowed to distinguish between regions of onset and propagation of interictal epileptic activity and to better map the epileptic network using the continuous activity of the epileptic source. These results are complemented by the first recordings of simultaneous intracranial EEG and fMRI in human. This whole-brain imaging technique revealed regional as well as distant haemodynamic changes related to very focal epileptic activity. The combination of fMRI and DTI tractography showed subtle changes in the structural connectivity of patients with Juvenile Myoclonic Epilepsy, a form of idiopathic generalised epilepsy. Finally, a combination of intracranial EEG and tractography was used to explore the structural connectivity of epileptic networks. Clinical relevance, methodological issues and future perspectives are discussed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available