Use this URL to cite or link to this record in EThOS:
Title: Automatic correspondence between 2D and 3D images of the breast
Author: Mertzanidou, T.
ISNI:       0000 0004 2728 2044
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Radiologists often need to localise corresponding findings in different images of the breast, such as Magnetic Resonance Images and X-ray mammograms. However, this is a difficult task, as one is a volume and the other a projection image. In addition, the appearance of breast tissue structure can vary significantly between them. Some breast regions are often obscured in an X-ray, due to its projective nature and the superimposition of normal glandular tissue. Automatically determining correspondences between the two modalities could assist radiologists in the detection, diagnosis and surgical planning of breast cancer. This thesis addresses the problems associated with the automatic alignment of 3D and 2D breast images and presents a generic framework for registration that uses the structures within the breast for alignment, rather than surrogates based on the breast outline or nipple position. The proposed algorithm can adapt to incorporate different types of transformation models, in order to capture the breast deformation between modalities. The framework was validated on clinical MRI and X-ray mammography cases using both simple geometrical models, such as the affine, and also more complex ones that are based on biomechanical simulations. The results showed that the proposed framework with the affine transformation model can provide clinically useful accuracy (13.1mm when tested on 113 registration tasks). The biomechanical transformation models provided further improvement when applied on a smaller dataset. Our technique was also tested on determining corresponding findings in multiple X-ray images (i.e. temporal or CC to MLO) for a given subject using the 3D information provided by the MRI. Quantitative results showed that this approach outperforms 2D transformation models that are typically used for this task. The results indicate that this pipeline has the potential to provide a clinically useful tool for radiologists.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available