Use this URL to cite or link to this record in EThOS:
Title: Technologies to improve the performance of wireless sensor networks in high-traffic applications
Author: Qin, F.
ISNI:       0000 0004 2731 9396
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
The expansion of wireless sensor networks to advanced areas, including structure health monitoring, multimedia surveillance, and health care monitoring applications, has resulted in new and complex problems. Traditional sensor systems are designed and optimised for extremely low traffic loads. However, it has been witnessed that network performance drops rapidly with the higher traffic loads common in advanced applications. In this thesis, we examine the system characteristics and new system requirements of these advanced sensor network applications. Based on this analysis, we propose an improved architecture for wireless sensor systems to increase the network performance while maintaining compatibility with the essential WSN requirements: low power, low cost, and distributed scalability. We propose a modified architecture deriving from the IEEE 802.15.4 standard, which is shown to significantly increase the network performance in applications generating increased data loads. This is achieved by introducing the possibility of independently allocating the sub-carriers in a distributed manner. As a result, the overall efficiency of the channel contention mechanism will be increased to deliver higher throughput with lower energy consumption. Additionally, we develop the concept of increasing the data transmission efficiency by adapting the spreading code length to the wireless environment. Such a modification will not only be able to deliver higher throughput but also maintain a reliable wireless link in the harsh RF environment. Finally, we propose the use of the battery recovery effect to increase the power efficiency of the system under heavy traffic load conditions. These three innovations minimise the contention window period while maximising the capacity of the available channel, which is shown to increase network performance in terms of energy efficiency, throughput and latency. The proposed system is shown to be backwards compatible and able to satisfy both traditional and advanced applications and is particularly suitable for deployment in harsh RF environments. Experiments and analytic techniques have been described and developed to produce performance metrics for all the proposed techniques.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available