Use this URL to cite or link to this record in EThOS:
Title: Fate-mapping neural stem cells in the mouse ventral neural tube by Cre-lox transgenesis
Author: Taveira-Marques, R.
ISNI:       0000 0004 2731 4894
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Neurons and glia (astrocytes and oligodendrocytes) are the two major cell types that make up the central nervous system (CNS). They are generated from precursor domains within the neuroepithelial germinal zone (ventricular zone, VZ) that surrounds the ventricles of the brain and the central canal of the spinal cord (the embryonic neural tube). In general, neurons are generated before glia. The intra-spinal circuits that control movement and locomotion are made up of different neuronal and glial elements that develop separately but come together to form interconnected functional units. To understand the logic of circuit development and ultimately circuit-driven behaviour, it is necessary to understand where and when each type of cell originates. To identify the products of the most ventral progenitor domain in the developing spinal cord, known as (Nkx2.2-expressing p3 domain), I made use of Cre-loxP technology. I generated a transgenic mouse line that expresses an inducible form of Cre recombinase (CreERT2) under Nkx2.2 transcriptional control and crossed this with a Cre-dependant reporter mouse to visualize p3-derived progeny. I confirmed that the p3 domain generates Sim1-expressing V3 interneurons, serotonergic interneurons as well as visceral motor neurons of the hindbrain. p3 progenitors also produce two spatially restricted subtypes of astrocytes, a few oligodendrocytes and ventrallypositioned ependymal cells. Unexpectedly, my studies also revealed that pre-ganglionic motor neurons of the sympathetic nervous system (SPNs, visceral motor neurons of the thoracic spinal cord), as well as a population of dorsally-located Sim1-expressing interneurons, are produced from Nkx2.2-expressing precursors. SPNs have been generally believed to originate from the same progenitor pool as HB9-positive somatic motor neurons (sMNs), defined by expression of Olig2 (pMN domain, immediately dorsal to p3). Supporting this idea, no spinal sMNs or SPNs are formed in Olig2-null mice. However, I found that Nkx2.2-expressing p3 precursors do not generate any HB9-positive sMNs, implying that sMNs and SPNs derive from distinct precursors - the latter from the most ventral part of the pMN domain that transiently co-expresses Nkx2.2 and Olig2. Thus, segregation of SPNs and sMNs occurs already in the neuroepithelium before their post-mitotic progenitors migrate away from the VZ into the ventral horns. This is how visceral and somatic MNs are known to develop in the brainstem, so my results provide a unifying theme to MN development at different levels of the neuraxis.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available