Use this URL to cite or link to this record in EThOS:
Title: Digital signal processing for coherent optical fibre communications
Author: Millar, D. S.
ISNI:       0000 0004 2729 0407
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
In this thesis investigations were performed into digital signal processing (DSP) algorithms for coherent optical fibre transmission systems, which provide improved performance with respect to conventional systems and algorithms. Firstly, an overview of coherent detection and coherent transmission systems is given. Experimental investigations were then performed into the performance of digital backpropagation for mitigating fibre nonlinearities in a dual-polarization quadrature phase shift keying (DP-QPSK) system over 7780 km and a dual-polarization 16- level quadrature amplitude modulation (DP-QAM16) system over 1600 km. It is noted that significant improvements in performance may be achieved for a nonlinear step-size greater than one span. An approximately exponential relationship was found between performance improvement in Q-factor and the number for required complex multipliers. DSP algorithms for polarization-switched quadrature phase shift keying (PS-QPSK) are then investigated. A novel two-part equalisation algorithm is proposed which provides singularity-free convergence and blind equalisation of PS-QPSK. This algorithm is characterised and its application to wavelength division multiplexed (WDM) transmission systems is discussed. The thesis concludes with an experimental comparison between a PS-QPSK transmission system and a conventional DP-QPSK system. For a 42.9 Gb/s WDM system, the use of PS-QPSK enabled an increase of reach of more than 30%. The resultant reach of 13,640 km was, at the time of publication, the longest transmission distance reported for 40 Gb/s transmission over an uncompensated link with standard fibre and optical amplification.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available