Use this URL to cite or link to this record in EThOS:
Title: A geographic knowledge discovery approach to property valuation
Author: Christopoulou, K.
ISNI:       0000 0004 2728 6782
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis involves an investigation of how knowledge discovery can be applied in the area Geographic Information Science. In particular, its application in the area of property valuation in order to reveal how different spatial entities and their interactions affect the price of the properties is explored. This approach is entirely data driven and does not require previous knowledge of the area applied. To demonstrate this process, a prototype system has been designed and implemented. It employs association rule mining and associative classification algorithms to uncover any existing inter-relationships and perform the valuation. Various algorithms that perform the above tasks have been proposed in the literature. The algorithm developed in this work is based on the Apriori algorithm. It has been however, extended with an implementation of a ‘Best Rule’ classification scheme based on the Classification Based on Associations (CBA) algorithm. For the modelling of geographic relationships a graph-theoretic approach has been employed. Graphs have been widely used as modelling tools within the geography domain, primarily for the investigation of network-type systems. In the current context, the graph reflects topological and metric relationships between the spatial entities depicting general spatial arrangements. An efficient graph search algorithm has been developed, based on the Djikstra shortest path algorithm that enables the investigation of relationships between spatial entities beyond first degree connectivity. A case study with data from three central London boroughs has been performed to validate the methodology and algorithms, and demonstrate its effectiveness for computer aided property valuation. In addition, through the case study, the influence of location in the value of properties in those boroughs has been examined. The results are encouraging as they demonstrate the effectiveness of the proposed methodology and algorithms, provided that the data is appropriately pre processed and is of high quality.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available