Use this URL to cite or link to this record in EThOS:
Title: Rotation intervals for quasi-periodically forced circle maps
Author: Pina Romero, Silvia
ISNI:       0000 0004 2729 9313
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
This work investigates some aspects of the dynamics of non-invertible quasi-periodic circle maps, from the point of view of rotation numbers and their structure in parameter space.Circle maps and quasi-periodically forced circle maps have been widely used asa model for a broad range of physical phenomena. From the mathematical point of view they have also received considerable attention because of the many interesting features they exhibit.The system used is given by the maps: x_n = [ x_n-1 + a + b/(2pi) sin( 2pi x_n-1) + c sin( 2pi theta_n-1) ] mod 1, and, theta_n = theta_n-1 + omega.Where a, b and c are real constants. In addition, b and omega are restricted, respectively, to values larger than one and irrational.A fundamental part of this thesis consists of numerical approximations of rotation intervals using and adapting of the work of Boyland (1986) to the quasi-periodic case.Particular emphasis was given to the case of large coupling strength in quasi-periodicforcing.Examination of the computed rotation numbers for the large coupling case, together with previous claims suggesting that for large coupling strength the b-term could be neglected (see Ding (1989)), led to the formulation of an ergodic argument which is statistically supported. This argument indicates that, for this case, the qualitative behavior of rotation number depends linearly on a. It is also shown that the length of the rotation interval, when the transition from a trivial rotation interval (invertible case) to a non-trivial rotation interval occurs, it develops locally as a universal unfolding.A different map, piecewise monotone, and structurally similar to the maps defined to calculate the edges of rotation intervals in Boyland (1986), is studied to illustrate how the rotation number grows. The edges of rotation intervals are analytically calculated and matched with numerical observations.
Supervisor: Glendinning, Paul; Montaldi, James Sponsor: CONACYT ; Fundacion Sofia Kovalevskaia ; Mexican Mathematical Society ; Fundacion ESRU
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Rotation Number ; Rotation Interval ; Quasi-Periodically Forced Circle Maps