Use this URL to cite or link to this record in EThOS:
Title: A distributed computing architecture to enable advances in field operations and management of distributed infrastructure
Author: Khan, Kashif
ISNI:       0000 0004 2729 8839
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Distributed infrastructures (e.g., water networks and electric Grids) are difficult to manage due to their scale, lack of accessibility, complexity, ageing and uncertainties in knowledge of their structure. In addition they are subject to loads that can be highly variable and unpredictable and to accidental events such as component failure, leakage and malicious tampering. To support in-field operations and central management of these infrastructures, the availability of consistent and up-to-date knowledge about the current state of the network and how it would respond to planned interventions is argued to be highly desirable. However, at present, large-scale infrastructures are “data rich but knowledge poor”. Data, algorithms and tools for network analysis are improving but there is a need to integrate them to support more directly engineering operations. Current ICT solutions are mainly based on specialized, monolithic and heavyweight software packages that restrict the dissemination of dynamic information and its appropriate and timely presentation particularly to field engineers who operate in a resource constrained and less reliable environments. This thesis proposes a solution to these problems by recognizing that current monolithic ICT solutions for infrastructure management seek to meet the requirements of different human roles and operating environments (defined in this work as field and central sides). It proposes an architectural approach to providing dynamic, predictive, user-centric, device and platform independent access to consistent and up-to-date knowledge. This architecture integrates the components required to implement the functionalities of data gathering, data storage, simulation modelling, and information visualization and analysis. These components are tightly coupled in current implementations of software for analysing the behaviour of networks. The architectural approach, by contrast, requires they be kept as separate as possible and interact only when required using common and standard protocols. The thesis particularly concentrates on engineering practices in clean water distribution networks but the methods are applicable to other structural networks, for example, the electricity Grid. A prototype implementation is provided that establishes a dynamic hydraulic simulation model and enables the model to be queried via remote access in a device and platform independent manner.This thesis provides an extensive evaluation comparing the architecture driven approach with current approaches, to substantiate the above claims. This evaluation is conducted by the use of benchmarks that are currently published and accepted in the water engineering community. To facilitate this evaluation, a working prototype of the whole architecture has been developed and is made available under an open source licence.
Supervisor: Brooke, John Sponsor: Higher Education Commission of Pakistan ; University of Manchester
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Water Distribution Systems ; Grid Computing ; Wireless Sensor Network ; Optimization Method ; M5 Decision Tree ; Decision Support Tools ; Web 2.0 ; ; Genetic Algorithm ; REST