Use this URL to cite or link to this record in EThOS:
Title: Electronic states in externally modulated dilute magnetic semiconductor/superconductor hybrids
Author: Amthong, Attapon
ISNI:       0000 0004 2727 6971
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Dilute magnetic semiconductors (DMSs) are attractive. They are candidate materials for applications in novel spintronic devices. Because of the giant Zeemaneect in the paramagnetic state, a magnetic eld can be used to manipulate the spin and charge of carriers in DMSs. One possibility is to exploit the nonhomogeneous magnetic elds due to superconductors. In this thesis, the heterostructures of the planar DMS and superconductors in dierent geometries and superconducting states are investigated to understand the electronic structure of electrons in the DMS. The combination of a superconducting disk in the Meissner state and the planar DMS is studied using both simple and realistic models of the magnetic eld associated with the disk. The giant Zeeman interaction is found to substantially inuence the energies of magnetically conned states in the adjacent DMS. In the simple model eld, the giant Zeeman energy acts as an extra conning potential and results in spin dependent electron states exhibiting dierent spatial distributions, while the more realistic model eld results in conned states exhibiting a variety of mixed spin characters. The hybrid of a superconducting lm in a superconducting vortex state and the DMS is then explored. The concentrated magnetic eld due to an isolated vortex is shown to trap strongly spin polarised electron states. In the case of an Abrikosov lattice of vortices, interactions between vortex-bound states result in a band structure which can be controlled by the magnitude of an external uniform magnetic eld. It is found that the numerical band structures obtained using a basis of Landau states dier from those previously reported, leading to the development of a tight-binding theory to conrm their corrections. Another hybrid investigated is a square superconductor above the DMS. In this case, the arrangement of vortices is distorted by the boundary of the sample, leading to the possibility of multivortex state and/or giant vortex states. It is discovered that the magnetic eld due to the former state induces \molecular" electron states in the DMS, while that due to the latter state induces electron states with increased spatial distribution. Tight-binding theory is again used to describe the observed energy levels and the interactions between electron states induced by the magnetic elds due to separated vortices in the multivortex state.
Supervisor: Crampin, Simon Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: dilute magnetic semiconductor ; superconductor ; spintronics