Use this URL to cite or link to this record in EThOS:
Title: Complying with norms : a neurocomputational exploration
Author: Colombo, Matteo
ISNI:       0000 0004 2726 0566
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The subject matter of this thesis can be summarized by a triplet of questions and answers. Showing what these questions and answers mean is, in essence, the goal of my project. The triplet goes like this: Q: How can we make progress in our understanding of social norms and norm compliance? A: Adopting a neurocomputational framework is one effective way to make progress in our understanding of social norms and norm compliance. Q: What could the neurocomputational mechanism of social norm compliance be? A: The mechanism of norm compliance probably consists of Bayesian - Reinforcement Learning algorithms implemented by activity in certain neural populations. Q: What could information about this mechanism tell us about social norms and social norm compliance? A: Information about this mechanism tells us that: a1: Social norms are uncertainty-minimizing devices. a2: Social norm compliance is one trick that agents employ to interact coadaptively and smoothly in their social environment. Most of the existing treatments of norms and norm compliance (e.g. Bicchieri 2006; Binmore 1993; Elster 1989; Gintis 2010; Lewis 1969; Pettit 1990; Sugden 1986; Ullmann‐Margalit 1977) consist in what Cristina Bicchieri (2006) refers to as “rational reconstructions.” A rational reconstruction of the concept of social norm “specifies in which sense one may say that norms are rational, or compliance with a norm is rational” (Ibid., pp. 10-11). What sets my project apart from these types of treatments is that it aims, first and foremost, at providing a description of some core aspects of the mechanism of norm compliance. The single most original idea put forth in my project is to bring an alternative explanatory framework to bear on social norm compliance. This is the framework of computational cognitive neuroscience. The chapters of this thesis describe some ways in which central issues concerning social norms can be fruitfully addressed within a neurocomputational framework. In order to qualify and articulate the triplet above, my strategy consists firstly in laying down the beginnings of a model of the mechanism of norm compliance behaviour, and then zooming in on specific aspects of the model. Such a model, the chapters of this thesis argue, explains apparently important features of the psychology and neuroscience of norm compliance, and helps us to understand the nature of the social norms we live by.
Supervisor: Series, Peggy. ; Clark, Andrew. Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: social norms ; reinforcement learning ; Bayesian modelling ; neural computing