Use this URL to cite or link to this record in EThOS:
Title: On conformal submersions and manifolds with exceptional structure groups
Author: Reynolds, Paul
ISNI:       0000 0004 2733 2179
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis comes in three main parts. In the first of these (comprising chapters 2 - 6), the basic theory of Riemannian and conformal submersions is described and the relevant geometric machinery explained. The necessary Clifford algebra is established and applied to understand the relationship between the spinor bundles of the base, the fibres and the total space of a submersion. O'Neill-type formulae relating the covariant derivatives of spinor fields on the base and fibres to the corresponding spinor field on the total space are derived. From these, formulae for the Dirac operators are obtained and applied to prove results on Dirac morphisms in cases so far unpublished. The second part (comprising chapters 7-9) contains the basic theory and known classifications of G2-structures and Spin+ 7 -structures in seven and eight dimensions. Formulae relating the covariant derivatives of the canonical forms and spinor fields are derived in each case. These are used to confirm the expected result that the form and spinorial classifications coincide. The mean curvature vector of associative and Cayley submanifolds of these spaces is calculated in terms of naturally-occurring tensor fields given by the structures. The final part of the thesis (comprising chapter 10) is an attempt to unify the first two parts. A certain `7-complex' quotient is described, which is analogous to the well-known hyper-Kahler quotient construction. This leads to insight into other possible interesting quotients which are correspondingly analogous to quaternionic-Kahler quotients, and these are speculated upon with a view to further research.
Supervisor: Figueroa-O'Farrill, Jose. ; Alekseevskii, Dmitri. Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Riemannian submersions ; conformal submersions ; Clifford algebra ; spinor bundles ; Dirac operators ; quaternionic-Kahler quotients