Use this URL to cite or link to this record in EThOS:
Title: Implications of stochastic ion channel gating and dendritic spine plasticity for neural information processing and storage
Author: O'Donnell, Cian
ISNI:       0000 0004 2732 8268
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
On short timescales, the brain represents, transmits, and processes information through the electrical activity of its neurons. On long timescales, the brain stores information in the strength of the synaptic connections between its neurons. This thesis examines the surprising implications of two separate, well documented microscopic processes — the stochastic gating of ion channels and the plasticity of dendritic spines — for neural information processing and storage. Electrical activity in neurons is mediated by many small membrane proteins called ion channels. Although single ion channels are known to open and close stochastically, the macroscopic behaviour of populations of ion channels are often approximated as deterministic. This is based on the assumption that the intrinsic noise introduced by stochastic ion channel gating is so weak as to be negligible. In this study we take advantage of newly developed efficient computer simulation methods to examine cases where this assumption breaks down. We find that ion channel noise can mediate spontaneous action potential firing in small nerve fibres, and explore its possible implications for neuropathic pain disorders of peripheral nerves. We then characterise the magnitude of ion channel noise for single neurons in the central nervous system, and demonstrate through simulation that channel noise is sufficient to corrupt synaptic integration, spike timing and spike reliability in dendritic neurons. The second topic concerns neural information storage. Learning and memory in the brain has long been believed to be mediated by changes in the strengths of synaptic connections between neurons — a phenomenon termed synaptic plasticity. Most excitatory synapses in the brain are hosted on small membrane structures called dendritic spines, and plasticity of these synapses is dependent on calcium concentration changes within the dendritic spine. In the last decade, it has become clear that spines are highly dynamic structures that appear and disappear, and can shrink and enlarge on rapid timescales. It is also clear that this spine structural plasticity is intimately linked to synaptic plasticity. Small spines host weak synapses, and large spines host strong synapses. Because spine size is one factor which determines synaptic calcium concentration, it is likely that spine structural plasticity influences the rules of synaptic plasticity. We theoretically study the consequences of this observation, and find that different spine-size to synaptic-strength relationships can lead to qualitative differences in long-term synaptic strength dynamics and information storage. This novel theory unifies much existing disparate data, including the unimodal distribution of synaptic strength, the saturation of synaptic plasticity, and the stability of strong synapses.
Supervisor: van Rossum, Mark. ; Nolan, Matt. Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: synaptic plasticity ; noise ; neurons