Use this URL to cite or link to this record in EThOS:
Title: Combined decision procedures for nonlinear arithmetics, real and complex
Author: Passmore, Grant Olney
ISNI:       0000 0004 2732 171X
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
We describe contributions to algorithmic proof techniques for deciding the satisfiability of boolean combinations of many-variable nonlinear polynomial equations and inequalities over the real and complex numbers. In the first half, we present an abstract theory of Grobner basis construction algorithms for algebraically closed fields of characteristic zero and use it to introduce and prove the correctness of Grobner basis methods tailored to the needs of modern satisfiability modulo theories (SMT) solvers. In the process, we use the technique of proof orders to derive a generalisation of S-polynomial superfluousness in terms of transfinite induction along an ordinal parameterised by a monomial order. We use this generalisation to prove the abstract (“strategy-independent”) admissibility of a number of superfluous S-polynomial criteria important for efficient basis construction. Finally, we consider local notions of proof minimality for weak Nullstellensatz proofs and give ideal-theoretic methods for computing complex “unsatisfiable cores” which contribute to efficient SMT solving in the context of nonlinear complex arithmetic. In the second half, we consider the problem of effectively combining a heterogeneous collection of decision techniques for fragments of the existential theory of real closed fields. We propose and investigate a number of novel combined decision methods and implement them in our proof tool RAHD (Real Algebra in High Dimensions). We build a hierarchy of increasingly powerful combined decision methods, culminating in a generalisation of partial cylindrical algebraic decomposition (CAD) which we call Abstract Partial CAD. This generalisation incorporates the use of arbitrary sound but possibly incomplete proof procedures for the existential theory of real closed fields as first-class functional parameters for “short-circuiting” expensive computations during the lifting phase of CAD. Identifying these proof procedure parameters formally with RAHD proof strategies, we implement the method in RAHD for the case of full-dimensional cell decompositions and investigate its efficacy with respect to the Brown-McCallum projection operator. We end with some wishes for the future.
Supervisor: Jackson, Paul B. Sponsor: Engineering and Physical Sciences Research Council (EPSRC) ; US National Science Foundation ; NASA ; INRIA/IRISA ; DReaM group's Platform Grant
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: mathematical logic ; quantifier elimination ; real closed fields