Use this URL to cite or link to this record in EThOS:
Title: Adaptive genetic variation in Scots pine (Pinus sylvestris L.) in Scotland
Author: Salmela, Matti Juhani
ISNI:       0000 0004 2732 1533
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Genetic differentiation in phenotypic traits among populations from heterogeneous environments is often observed in common-garden studies on forest trees, but data on adaptive variation in Scots pine (Pinus sylvestris L.) in Scotland are limited. As a result, current seed transfer guidelines are based on earlier molecular marker studies and do not take into account environmental or adaptive genetic variation. An analysis of spatial variation in climate showed substantial differences in temperature and precipitation among the native Scots pine sites in Scotland. To investigate whether differentiation in response to environmental variation has occurred in Scotland, a glasshouse-based common-garden trial of ~3,360 seedlings from 21 populations and 84 open-pollinated families was established in 2007. At the beginning of the 2nd growing season, timing of bud flush showed evidence of genetic differentiation among populations, with those from cooler origins generally flushing earlier. Variation was also found among families within populations, suggesting that the trait is genetically controlled. Populations and families showed different levels of variability in this trait which could be partly due to variable levels of temporal climate fluctuation in different parts of Scotland. Chlorophyll fluorescence was used to examine drought response in three-year old seedlings from five populations on sites that experience contrasting levels of annual rainfall. It was found that the response was not related to rainfall, but possibly to more complex moisture variables that also take into account additional factors such as evaporation. Also, photosynthetic capacity in response to cold winter temperatures varied significantly among eight populations that were kept outdoors, and the largest reduction was seen in seedlings from the mildest, most maritime coastal site. The following spring, height growth and needle flush started earlier in seedlings from cooler locations. Earlier studies on genetic diversity of native pinewoods have shown high levels of selectively neutral variation in this predominantly outcrossing conifer, and a mating system analysis with a limited number of microsatellite markers supported this pattern. Together, these data suggest that despite significant historic population size decrease, environmental gradients have resulted in genetic differentiation among native pinewoods. In order to minimise the risk of planting poorly-adapted stock and to maximise the success of replanting programmes, it is important that the origins of planting stock are carefully considered in management guidelines for the species.
Supervisor: Cavers, Stephen; Cottrell, Joan. ; Iason, Glenn. ; Ennos, Richard. Sponsor: Scottish Forestry Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: adaption ; genetic differentiation ; spatial heterogeneity ; temporal heterogeneity