Use this URL to cite or link to this record in EThOS:
Title: Genetics of drug resistance in malaria : identification of genes conferring chloroquine and artemisinin resistance in rodent malaria parasite Plasmodium chabaudi
Author: Modrzynska, Katarzyna Kinga
ISNI:       0000 0004 2729 9874
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Resistance to antimalarial drugs continues to be a major obstacle in controlling and eradicating malaria. The identification of genetic markers of resistance is vital for disease management but they can be difficult to predict before resistance arises in the field. This thesis describes an alternative approach to gene identification, combining an in vivo experimental evolution model, Linkage Group Selection (LGS) and Solexa genome re-sequencing. Here this model was used to resolve the genetic basis of chloroquine and artemisinin resistance in the rodent malaria parasite Plasmodium chabaudi. AS-30CQ is a parasite with high resistance to chloroquine and resistance to artemisinin. It was crossed with the genetically different drug-sensitive strain AJ. The resulting progeny were selected with drugs and backcrossed to the sensitive parent. Both crosses were treated with increasing concentrations of chloroquine and artemisinin. The frequency of markers from the sensitive parasite were analysed in order to characterize the signatures of drug selection. Three loci involved progressively in chloroquine resistance were identified on chromosomes 11, 3 and 2. One main locus on chromosome 2 was identified with artemisinin selection. The Solexa platform was used to re-sequence the genomes of both AS-30CQ and its sensitive progenitor, AS-sens. The differences between the two genomes were integrated with the LGS data to identify: 1) a strong candidate for the main CQresistance determinant - a putative amino acid transporter on chromosome 11 (aat1) 2) two candidates for high level chloroquine resistance on chromosome 3. and 3) a mutation in ubp1 gene on chromosome 2 that is likely to contribute to the highest level of chloroquine resistance and be main determinant of the artemisinin resistance phenotype. In addition the last section of this thesis describes two otherwise isogenic clones showing low- and high levels of chloroquine resistance were grown competitively to evaluate the effect of these mutations on parasite fitness. The highly resistant strain demonstrated a loss of fitness in relation to its more sensitive progenitor and was outcompeted in untreated and low-treated infections.
Supervisor: Hunt, Paul. ; Carter, Richard. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: drug resistance ; malaria ; artemisinin resistance ; chloroquine resistance ; Plasmodium chabaudi