Use this URL to cite or link to this record in EThOS:
Title: Modelling the effects of genetic line and feeding system on methane emissions from dairy systems
Author: Bell, Matthew
ISNI:       0000 0004 2729 9065
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Dairy cattle make a significant contribution to global methane emissions. Milking cows in the UK make up about a fifth of the total cattle population, with Holstein-Friesian cows being the most common breed. Investigating ways to minimise methane, a potent greenhouse gas (GHG) produced by dairy cows from enteric fermentation and manure, has gained importance in recent years due its role in climate change. Currently, GHG emissions from UK dairy farming are predicted using the Intergovernmental Panel on Climate Change (IPCC) Tier II methodology. The IPCC Tier II methodology and statistical prediction equations from the literature were evaluated for their ability to reliably model methane output using data from the Langhill Holstein-Friesian experimental herd. The Langhill dairy herd is on a long-term breeding and feeding systems experiment, and cows are on average 88% North American Holstein genes. The production systems within the herd represent a range of dairy systems that may be found commercially. Therefore, production values were assumed to be representative of those that could be found in the commercial Holstein-Friesian population, so factors affecting system methane emissions and appropriate mitigation options could be investigated. Prediction equations using dry matter (DM) intake and gross energy intake as input values were the most appropriate equations for reliably estimating daily enteric methane output. However, if DM intake values are not available, the IPCC Tier II method was found to provide a suitable prediction of methane emissions over a cow‘s lactation and lifetime. This study found that GHG emissions from enteric fermentation and manure, expressed as carbon dioxide equivalents (CO2-eq.), account for about 66% of dairy system CO2-eq. emissions, with enteric methane output being the main contributor (34% of system CO2-eq. emissions). Breeding for increased kilograms of milk fat plus protein production was shown to help reduce dairy system methane emissions. Cows of predominantly North American Holstein genes in this study produced more milk when fed a diet with a low proportion of forage and had lower GHG emissions and land requirement per kilogram energy corrected milk than similar cows fed a diet with a higher proportion of forage. Strategies to mitigate GHG emissions (including methane) and the environmental impact of dairy systems should seek to select animals that better utilise their feed intake to meet their genetic potential for milk production.
Supervisor: Simm, Geoff. ; Russell, Graham. Sponsor: Scottish Government Rural and Environmental Research and Analysis Directorate (RERAD) ; Scottish Agricultural College (SAC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: methane ; dairy cows ; production systems