Use this URL to cite or link to this record in EThOS:
Title: Investigation into taxane resistant breast cancer
Author: Kenicer, Juliet Elisabeth Margaret
ISNI:       0000 0004 2728 8120
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
One group of chemotherapeutics that are used successfully to treat breast cancer, alone or in combination with other agents, are the taxanes; paclitaxel and docetaxel. They act by interfering with the spindle microtubule dynamics of the cell causing cell cycle arrest. However, the complexities underlying the mechanism of action are yet to be fully elucidated. Arguably, one of the most significant problems with taxanes is chemoresistance. Unfortunately, some patients are intrinsically resistant to taxanes and others acquire resistance to taxanes as treatment advances. This problem is exacerbated by a lack of understanding of the mechanisms underlying taxane resistance. Isogenic breast cancer cell lines that were taxane resistant were generated to use as an experimental model. Paclitaxel resistant (PACR) MDA-MB-231, paclitaxel resistant ZR75-1 and docetaxel resistant (DOCR) ZR75-1 cell lines were successfully generated by incrementally increasing taxane dose in respective native cell lines in vitro. An extensive characterisation of each of the resistant cell lines was conducted, focussing primarily on the 25nM resistant cells which were determined to be the most clinically relevant dose of taxane. A suboptimal dose of 5nM, a “superoptimal” dose of 50nM and the native, taxane sensitive cells was included. Dose response cell count experiments were performed that confirmed taxane resistant cells had been generated. It was shown that MDA-MB-231 native cells were more sensitive to paclitaxel than the ZR75-1 native cells, suggesting that ZR75-1 cells may already have low level inherent resistance. The MDA-MB-231 25nM PACR cells were tested to determine whether they retained PACR when maintained in media containing no paclitaxel. MDA-MB-231 25nM PACR cells were maintained in a taxane free environment for six months and then rechallenged with taxane. When rechallenged, the PACR cells previously maintained in the absence of paclitaxel mirrored the pattern of growth of corresponding PACR cells that had been maintained in the presence of paclitaxel. This proved that in the absence of paclitaxel, PACR cells did not revert to parent phenotype. This meant that experiments could be designed to grow cell lines as xenografts in mice, (in the absence of paclitaxel) & bring in vitro experiments into an in vivo setting. Effects of taxane treatment on both native and resistant cells were analysed using flow cytometry. Paclitaxel treatment exerted G2/M block in native MDA-MB-231 cells but when PACR cells were treated with the same dose of paclitaxel no G2/M block was observed, suggesting that PACR cells had developed a mechanism for escaping G2/M block. ZR75-1 native lines were also investigated and we established that treatment with paclitaxel also exerted a G2/M block in these lines. In future studies this process will be repeated to investigate the effect of taxane treatment on the ZR75-1 PACR and DOCR lines. CD 1 nude mice were injected with cells from all five cell lines to grow xenografts, unfortunately MDA-MB-231 PACR cells failed to grow so they could not be used for further xenograft experiments. PACR, DOCR and Native ZR75-1 cells did successfully grow as xenografts in mice and confirmed that all 3 groups showed very similar growth patterns. A cross resistance experiment was conducted and it was determined that the DOCR xenografts maintained a taxane resistant phenotype to docetaxel, and not paclitaxel and the PACR xenografts may be perpetuate the paclitaxel resistant phenotype in xenografts and that there may be cross resistance to docetaxel in the paclitaxel resistant xenografts. This is the first time that taxane resistant cell lines grown in this way have been established as xenografts in mice. These cross resistance experiments represent novel findings and merit further investigation. Extensive genomic and transcriptomic analyses were carried out on the cell lines to help identify potential taxane resistance markers. aCGH experiments were carried out to compliment the illumina experiments. The first set of experiments used DNA from pooled whole female blood as ref sample and DNA from each of the native and taxane resistant cell lines as test samples. The second set of experiments used DNA from native cells as a ref sample and DNA from their respective taxane resistant cells as a test, which allowed areas of loss or gain to be tracked in the genome as resistance increased. In the MDA-MB-231 cell lines the following areas of loss extended with increasing resistance: 1p36.13-q44, 6p25.3-q12, 8p, 10p, 19q, X Chr and the following areas of gain 2p25.3-23.3, 3p24.3-q13.3, 4p16.1-q12, 5q14.3-q31.1, 8q21.13-24.3, 11q15.1-q25, centromeric 12, and centromeric 14. In the ZR75-1 PACR and DOCR cell lines the areas of loss extended with increasing resistance in the following regions: 7q, 12p and 16q. For gene expression analysis RNA was extracted from the MDA-MB-231 cell lines, labelled and hybridised them to illumina human ref 8 vs. 2 chips. Data showed a progressive increase in mRNA dysregulation as paclitaxel resistance increased. Eleven genes were dysregulated across all resistance levels in the PACR MDA-MB-231 cells when compared to the relative cell lines; RGS16, CLDN1, IL7R, P&PP1R14C, COBL, TRPV4, TSPAN8, CD33, NLRP2, P13, and PAGE5. The experiment was repeated using MDA-MB-231 PACR, ZR75-1 PACR and DOCR cells and resulting data was analysed to determine genes commonly dysregulated across resistance levels, between MDA-MB-231 PACR and ZR75-1 PACR and between ZR75-1 PACR and DOCR cell lines. An extensive literature search was conducted and established four genes of interest in the context of our genomic and transcriptomic experiments including AURKA, Mdr-1, Stathmin and YY1. The novel biomarkers identified in the illumina experiments were validated with complimentary qPCR gene expression experiments looking at expression levels of the eleven commonly dysregulated genes identified and a panel of 19 other genes with significantly increased or decreased expression as resistance increased including AURKA, Mdr-1, Stathmin and YY1. Western blots were performed with lysates from the cell lines using a standard panel of predictive breast cancer markers and AURKA, Mdr-1, Stathmin and YY1. Combining the data from the genomic study, the gene expression profile, qPCR and Western blotting it was established that Mdr-1 had increased expression in the taxane resistant ZR75-1 lines and YY1 had increased expression in the MDA-MB-231 PACR line. Material from the LAPATAX trial was used to observe any transcriptomic changes occurring in tumours following treatment with docetaxel and to compare them to changes identified in our in vitro and xenograft models, this allowed the final step to be taken into a translational environment. LAPATAX (EORTC 10054) is a phase I-II study of Lapatanib and Docetaxel as neoadjuvant treatment for HER-2 +ve locally advanced/inflammatory or large operable breast cancer. Tumour material from eighteen core biopsies pre and post treatment was obtained, the mRNA was extracted, labelled and hybridised to the illumina array. This allowed the changes in gene expression pre and post docetaxel treatment to be tracked. The gene expression data from the LAPATAX trial was combined with gene expression data from our cell line panel and identified two novel putative markers of taxane resistance DUSP1 and FOS. Although sample size is small this has provided extremely valuable evidence directly from the clinic. These two novel putative biomarkers are extremely intriguing and certainly merit further investigation, ideally using additional taxane treated breast tumour tissue. Ultimately, an isogenic in vitro model of taxane resistance was developed in two different cell lines and with two different taxanes within one cell line. The cell lines were characterised and the effect of the taxanes on the cell cycle was determined in the native and taxane resistant lines. Selected cell lines were grown as xenografts in mice and performed successful cross resistance studies upon them. A large transcriptomic and genomic analysis was conducted and has identified a panel of potential taxane resistance markers and areas of loss and gain in the genome perpetuated by increasing taxane resistance. This analysis was validated using qPCR and Western blotting. This allowed a panel of novel taxane resistance markers to be identified. In future studies it is hoped that these targets will be knocked down with shRNA to observe if the taxane resistant cell lines revert to the parental phenotype. In vitro studies will be conducted to find agents that may be used to reduce expression of these markers and restore sensitivity to taxanes and consequently restore the efficacy of these drugs in a clinical setting. As far as the author is aware this is the first time that isogenic taxane resistant cell lines have been generated and investigated in this way.
Supervisor: Bartlett, John. ; Gourley, Charlie. Sponsor: Medical Research Council (MRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: taxane ; breast cancer ; biomarkers