Use this URL to cite or link to this record in EThOS:
Title: Ubiquitous communications for wireless personal area networks in a heterogeneous environment
Author: Ma, Junkang
ISNI:       0000 0004 2728 762X
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The widespread use of wireless technologies has led to a tremendous development in wireless communication systems. Currently, an individual mobile user may carry multiple personal devices with multiple wireless interfaces, which can interconnect with each other to form a Wireless Personal Area Network (WPAN) which moves with this user. These devices exist in a heterogeneous environment which is composed of various wireless networks with differing coverage and access technologies and also the topology, device conditions and wireless connections in the WPAN may be dynamically changing. Such individual mobile users require ubiquitous communications anytime, anywhere, with any device and wish content to be efficiently and continuously transferred across the various wireless networks both outside and inside WPANs, wherever they move. This thesis presents research carried out into how to implement ubiquitous communications for WPANs in such an environment. Two main issues are considered. The first is how to initiate content transfer and keep it continuous, no matter which wireless network is used as a user moves or how the WPAN changes dynamically. The second is how to implement this transfer in the most efficient way: selecting the most suitable transfer mode for a WPAN according to the user’s and application’s requirements. User-centric (personal-area-centric) and contentcentric mechanisms are proposed in this thesis to address these issues. A scheme based on a Personal Distributed Environment (PDE) concept and designed as a logical user-based management entity is presented. This is based on three mechanisms which are proposed to overcome the technical problems in practical scenarios, which cannot be solved by existing approaches. A novel mechanism is proposed to combine local direct and global mobile communications, in order to implement ubiquitous communications in both infrastructure-less and infrastructurebased networks. This enables an individual user’s ubiquitous communications to be initiated in an infrastructure-less network environment and kept continuous when they move across infrastructure-based networks. Its advantages are evaluated by a performance analysis model and compared to existing solutions and verified by experiments. A cooperation and management scheme is also proposed for dynamic changes of multiple mobile routers and flexible switching of personal device roles in a WPAN while keeping ongoing ubiquitous communications continuous. This adopts a novel view of WPANs which solves the addressing problems caused by changes of mobile routers and makes these transparent to personal devices in the WPAN and external content sources. It provides an efficient method for changing the mobile router of a single WPAN or a WPAN merging with another moving network. Its benefits are demonstrated through performance analysis models. Finally, a novel user-centric and contentcentric mechanism for decision making, to select the most appropriate mobile router in a dynamically changing WPAN environment is proposed. This selects the most suitable content transfer mode for the WPAN to fulfil an individual user’s various requirements. It has different strategies to suit various types of applications. Selection results are demonstrated to verify the proposed mechanism in multiple scenarios of changing user requirements, applications and WPAN conditions.
Supervisor: Hannah, John. ; Laurenson, David. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: wireless communication systems ; Wireless Personal Area Network ; WPAN ; Personal Distributed Environment ; PDE ; infrastructure-less network environment