Use this URL to cite or link to this record in EThOS:
Title: Out-of-vocabulary spoken term detection
Author: Wang, Dong
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Spoken term detection (STD) is a fundamental task for multimedia information retrieval. A major challenge faced by an STD system is the serious performance reduction when detecting out-of-vocabulary (OOV) terms. The difficulties arise not only from the absence of pronunciations for such terms in the system dictionaries, but from intrinsic uncertainty in pronunciations, significant diversity in term properties and a high degree of weakness in acoustic and language modelling. To tackle the OOV issue, we first applied the joint-multigram model to predict pronunciations for OOV terms in a stochastic way. Based on this, we propose a stochastic pronunciation model that considers all possible pronunciations for OOV terms so that the high pronunciation uncertainty is compensated for. Furthermore, to deal with the diversity in term properties, we propose a termdependent discriminative decision strategy, which employs discriminative models to integrate multiple informative factors and confidence measures into a classification probability, which gives rise to minimum decision cost. In addition, to address the weakness in acoustic and language modelling, we propose a direct posterior confidence measure which replaces the generative models with a discriminative model, such as a multi-layer perceptron (MLP), to obtain a robust confidence for OOV term detection. With these novel techniques, the STD performance on OOV terms was improved substantially and significantly in our experiments set on meeting speech data.
Supervisor: King, Simon. ; Frankel, Joe. Sponsor: Marie Curie Fellowship
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: spoken terrm detection ; pronunciation prediction