Use this URL to cite or link to this record in EThOS:
Title: Busy burst technology applied to OFDMA-TDD systems
Author: Ghimire, Birendra
ISNI:       0000 0004 2731 6902
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The most significant bottleneck in wireless communication systems is an ever-increasing disproportion between the bandwidth demand and the available spectrum. A major challenge in the field of wireless communications is to maximise the spatial reuse of resources whilst avoiding detrimental co-channel interference (CCI). To this end, frequency planning and centralised coordination approaches are widely used in wireless networks. However, the networks for the next generation of wireless communications are often envisioned to be decentralised, randomly distributed in space, hierarchical and support heterogeneous traffic and service types. Fixed frequency allocation would not cater for the heterogeneous demands and centralised resource allocation would be cumbersome and require a lot of signalling. Decentralised radio resource allocation based on locally available information is considered the key. In this context, the busy burst (BB) signalling concept is identified as a potential mechanism for decentralised interference management in future generation networks. Interference aware allocation of time-frequency slots (chunks) is accomplished by letting receivers transmit a BB in a time-multiplexed mini-slot, upon successful reception of data. Exploiting channel reciprocity of the time division duplex (TDD) mode, the transmitters avoid reusing the chunks where the received BB power is above a pre-determined threshold so as to limit the CCI caused towards the reserved chunks to a threshold value. In this thesis, the performance of BB signalling mechanism in orthogonal frequency division multiple access - time division duplexing (OFDMA-TDD) systems is evaluated by means of system level simulations in networks operating in ad hoc and cellular scenarios. Comparisons are made against the state-of-the-art centralised CCI avoidance and mitigation methods, viz. frequency planning, fractional frequency reuse, and antenna array with switched grid of beams, as well as decentralised methods such as the carrier sense multiple access method that attempt to avoid CCI by avoiding transmission on chunks deemed busy. The results demonstrate that with an appropriate choice of threshold parameter, BB-based techniques outperform all of the above state-of-the-art methods. Moreover, it is demonstrated that by adjusting the BB-specific threshold parameter, the system throughput can be traded off for improving throughput for links with worse channel condition, both in the ad hoc and cellular scenario. Moreover, by utilising a variable BB power that allows a receiver to signal the maximum CCI it can tolerate, it is shown that a more favourable trade-off between total system throughput and link throughput can be made. Furthermore, by performing link adaptation, it is demonstrated that the spatial reuse and the energy efficiency can be traded off by adjusting the threshold parameter. Although the BB signalling mechanism is shown to be effective in avoiding detrimental CCI, it cannot mitigate CCI by itself. On the other hand, multiple antenna techniques such as adaptive beamforming or switched beam approaches allow CCI to be mitigated but suffer from hidden node problems. The final contribution of this thesis is that by combining the BB signalling mechanism with multiple antenna techniques, it is demonstrated that the hybrid approach enhances spatial reusability of resources whilst avoiding detrimental CCI. In summary, this thesis has demonstrated that BB provides a flexible radio resource mechanism that is suitable for future generation networks.
Supervisor: Haas, Harald. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: busy burst ; OFDMA-TDD