Use this URL to cite or link to this record in EThOS:
Title: Computational treatment of superlatives
Author: Scheible, Silke
ISNI:       0000 0004 2729 8898
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The use of gradable adjectives and adverbs represents an important means of expressing comparison in English. The grammatical forms of comparatives and superlatives are used to express explicit orderings between objects with respect to the degree to which they possess some gradable property. While comparatives are commonly used to compare two entities (e.g., “The blue whale is larger than an African elephant”), superlatives such as “The blue whale is the largest mammal” are used to express a comparison between a target entity (here, the blue whale) and its comparison set (the set of mammals), with the target ranked higher or lower on a scale of comparison than members of the comparison set. Superlatives thus highlight the uniqueness of the target with respect to its comparison set. Although superlatives are frequently found in natural language, with the exception of recent work by (Bos and Nissim, 2006) and (Jindal and Liu, 2006b), they have not yet been investigated within a computational framework. And within the framework of theoretical linguistics, studies of superlatives have mainly focused on semantic properties that may only rarely occur in natural language (Szabolsci (1986), Heim (1999)). My PhD research aims to pave the way for a comprehensive computational treatment of superlatives. The initial question I am addressing is that of automatically extracting useful information about the target entity, its comparison set and their relationship from superlative constructions. One of the central claims of the thesis is that no unified computational treatment of superlatives is possible because of their great semantic complexity and the variety of syntactic structures in which they occur. I propose a classification of superlative surface forms, and initially focus on so-called “ISA superlatives”, which make explicit the IS-A relation that holds between target and comparison set. They are suitable for a computational approach because both their target and comparison set are usually explicitly realised in the text. I also aim to show that the findings of this thesis are of potential benefit for NLP applications such as Question Answering, Natural Language Generation, Ontology Learning, and Sentiment Analysis/Opinion Mining. In particular, I investigate the use of the “Superlative Relation Extractor“ implemented in this project in the area of Sentiment Analysis/Opinion Mining, and claim that a superlative analysis of the sort presented in this thesis, when applied to product evaluations and recommendations, can provide just the kind of information that Opinion Mining aims to identify.
Supervisor: Webber, Bonnie. ; Milosavljevic, Maria. ; Oberlander, Jon. Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: adjectives ; adverbs ; gradable property ; superlatives ; ISA superlatives ; NLP applications ; Superlative Relation Extractor ; Opinion Mining