Use this URL to cite or link to this record in EThOS:
Title: Wide-coverage parsing for Turkish
Author: Çakici, Ruket
ISNI:       0000 0004 2729 1215
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Wide-coverage parsing is an area that attracts much attention in natural language processing research. This is due to the fact that it is the first step tomany other applications in natural language understanding, such as question answering. Supervised learning using human-labelled data is currently the best performing method. Therefore, there is great demand for annotated data. However, human annotation is very expensive and always, the amount of annotated data is much less than is needed to train well-performing parsers. This is the motivation behind making the best use of data available. Turkish presents a challenge both because syntactically annotated Turkish data is relatively small and Turkish is highly agglutinative, hence unusually sparse at the whole word level. METU-Sabancı Treebank is a dependency treebank of 5620 sentences with surface dependency relations and morphological analyses for words. We show that including even the crudest forms of morphological information extracted from the data boosts the performance of both generative and discriminative parsers, contrary to received opinion concerning English. We induce word-based and morpheme-based CCG grammars from Turkish dependency treebank. We use these grammars to train a state-of-the-art CCG parser that predicts long-distance dependencies in addition to the ones that other parsers are capable of predicting. We also use the correct CCG categories as simple features in a graph-based dependency parser and show that this improves the parsing results. We show that a morpheme-based CCG lexicon for Turkish is able to solve many problems such as conflicts of semantic scope, recovering long-range dependencies, and obtaining smoother statistics from the models. CCG handles linguistic phenomena i.e. local and long-range dependencies more naturally and effectively than other linguistic theories while potentially supporting semantic interpretation in parallel. Using morphological information and a morpheme-cluster based lexicon improve the performance both quantitatively and qualitatively for Turkish. We also provide an improved version of the treebank which will be released by kind permission of METU and Sabancı.
Supervisor: Steedman, Mark. ; Osborne, Miles. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: combinatory categorial grammar ; CCG ; parsing ; natural language processing ; morphology ; syntax