Use this URL to cite or link to this record in EThOS:
Title: Effects of 50m and 400m race paces on three-dimensional kinematics and linear kinetics of sprint and distance front crawl swimmers
Author: McCabe, Carla
ISNI:       0000 0004 2727 6031
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Many authors have proposed that sprint and distance front crawl swimmers differ in their stroke characteristics, however little three-dimensional quantitative data is provided to support these assumptions. It is currently unknown whether sprint and distance swimmers exhibit distinct stroke characteristics when swimming at the same pace. There were two main purposes of this study: 1) to determine whether there are distinct kinematic and kinetic differences between sprint and distance front crawl swimmers, and 2) to investigate whether stroke characteristics of front crawl swimmers, in terms of kinematic and kinetic variables change with swimming speed. Fifteen male national/international front crawl swimmers (17.87 +/- 2.33yrs; 73.87 +/- 8.72kg; 183.02 +/- 6.84cm) volunteered to participate in this study. This sample was composed of seven sprint (SG) and eight distance (DG) swimmers. Each testing session required swimmers to perform four 25m sprints and one 400m max effort (front crawl), with no pacing strategy, in a randomised order. Each trial was performed through a 6.75m3 calibrated space and recorded by six gen-locked JVC KY32 CCD cameras (4 below and 2 above water) sampling at a frequency of 50 fields per second. All trials were processed using ‘APAS’ software to obtain 3D coordinate data. Anthropometric measures were quantified using the elliptical zone method. Both data sets were entered into a bespoke MATLAB program which output: average swim velocity (Vav), stroke length (SL), stroke frequency (SF), stroke index (SI), vertical and lateral displacement for each segment, shoulder and hip roll angle, and elbow joint angle variables (1st back, shoulder x, end back, hand exit and recovery elbow angle). Stroke phase (entry, pull, push and recovery) durations (%) were quantified at instants corresponding to percentiles of the stroke cycle. Centre of mass position data were obtained from the digitised 3D data using a 14 segment rigid link body model in conjunction with the body segment parameter data obtained by the elliptical zone method. Component whole body velocity (VCOMHor), acceleration (accCOM) and net force (forceCOM) were derived from the centre of mass position data. Variables were statistically analysed in SPSS v.14.0, using a General Linear Model, repeated measures analysis of variance. The results indicated that the groups differed (p<0.05) with respect to the duration of the pull phase, the occurrence of max left and right shoulder roll and the temporal sequencing of the shoulders and hips rolling at both sprint and distance pace. Other variables approached significance between the groups, particularly when distance swimming, such as the duration of the push phase (p=0.082), the Vav (p=0.071) and average VCOMHor (p=0.071). The stroke kinematic variables that changed between paces (p<0.05) were the duration of the entry, pull, push, hand exit and recovery phases; the elbow angle at the end back position and the push phase range; total shoulder and hip roll; the sum average vertical displacement of the foot; the time to max vertical and lateral displacement of the finger; the time at max right elbow extension; the average VCOMHor, Min VCOMHor and Max VCOMHor. The stroke kinetic variables that changed between paces (p<0.05) were the Min accCOM, Max accCOM, range of accCOM, min forceCOM and max forceCOM. Other variables approached significance between the paces such as the entry elbow angle (p=0.084), the max right elbow extension (p=0.056), the finger lateral range (p=0.067) and the time to max accCOM (p=0.079). The SG displayed shorter durations of the pull and push phases than the DG for both paces, which was linked to the faster horizontal velocity and/or vertical acceleration of the hand. The sequencing order of the shoulders and hips changed between groups and paces, which was speculated to be controlled by the magnitude of the leg-kick. The main changes between paces were the greater magnitude of elbow angle at both the end back position and the push phase range, which contributed to the adjustment of kinetic variables. SL, SF, SI, Vav and the duration of the all the stroke phases changed between sprint and distance pace in order to meet the physiological requirements of the race distance. The prolonged duration of the entry phase, when distance swimming, resulted in a delayed attainment of the catch position and maximum stroke depth. Moreover, the magnitude of shoulder and hip roll increased at distance compared to sprint pace, which in turn influenced the magnitude of average vertical and range of lateral displacement of the finger between paces. In conclusion, contrary to the literature, SG and DG differed only with respect to the duration of the pull and push stroke phases and the sequencing order of the shoulders and hips. All swimmers adjust the majority of kinematic and kinetic variables depending on the swim pace in order to optimise performance for that race distance.
Supervisor: Sanders, Ross H. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Sports Science ; Kinematics