Use this URL to cite or link to this record in EThOS:
Title: Study into the use of the GNSS for maritime structure analysis
Author: Bélanger, Joseph François Maurice
ISNI:       0000 0004 2726 7194
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
Certain civilian uses of the Global Positioning System (GPS) now demand levels of precision exceeding the original military specifications for the system. For example, at present, GPS is used in surveying, navigation and monitoring applications. Although GPS has been used previously to monitor the structural integrity of civilian structures such as bridges and towers, the experimental conditions have one significant difference: These structures are all immobile allowing for fixed references to be used. This research’s ultimate aim was to conduct a feasibility study into the use of GPS, and of the soon to be deployed Galileo constellation, in structural monitoring of maritime vessels. Under these conditions, a fixed base station as was used in previous structural monitoring is not a valid approach. New techniques, or variations on the current ones, were examined to deal with this lack of a fixed reference. This thesis considers the simulator that was developed in the early phases of the project and the results that were generated. An expanded version of the simulator is then explained, alongside the processes used to model structural deformation experienced by a ship at sea. Frequency analysis of the simulator results is also performed and the results detailed. It is found that frequency-domain analysis allows for the identification of different movements seen on the structure. In addition, an analysis of the impact the deployment of the Galileo constellation is conducted using simulation. This simulation found a drop of about 20% in Dilution of Precision (DOP) over several areas. This thesis then examines some of the field work, that aimed to measure rigidbody motion, that was conducted onboard Red Jet 4, a catamaran-type vessel. The experimental setup is described, and the results are briefly considered. A method for determining the optimal configuration of the receiver network is also proposed alongside an algorithm to detect plastic deformation of a vessel structure. Finally, this report considers the original project objectives and how these were or were not met. Should sufficient accuracy be achieved by a GPS receiver network, it is possible to use the system to monitor ship structures.
Supervisor: Tatnall, Adrian Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: VM Naval architecture. Shipbuilding. Marine engineering ; QA76 Computer software