Use this URL to cite or link to this record in EThOS:
Title: Graphical representation of canonical proof : two case studies
Author: Heijltjes, Willem Bernard
ISNI:       0000 0004 2721 7146
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
An interesting problem in proof theory is to find representations of proof that do not distinguish between proofs that are ‘morally’ the same. For many logics, the presentation of proofs in a traditional formalism, such as Gentzen’s sequent calculus, introduces artificial syntactic structure called ‘bureaucracy’; e.g., an arbitrary ordering of freely permutable inferences. A proof system that is free of bureaucracy is called canonical for a logic. In this dissertation two canonical proof systems are presented, for two logics: a notion of proof nets for additive linear logic with units, and ‘classical proof forests’, a graphical formalism for first-order classical logic. Additive linear logic (or sum–product logic) is the fragment of linear logic consisting of linear implication between formulae constructed only from atomic formulae and the additive connectives and units. Up to an equational theory over proofs, the logic describes categories in which finite products and coproducts occur freely. A notion of proof nets for additive linear logic is presented, providing canonical graphical representations of the categorical morphisms and constituting a tractable decision procedure for this equational theory. From existing proof nets for additive linear logic without units by Hughes and Van Glabbeek (modified to include the units naively), canonical proof nets are obtained by a simple graph rewriting algorithm called saturation. Main technical contributions are the substantial correctness proof of the saturation algorithm, and a correctness criterion for saturated nets. Classical proof forests are a canonical, graphical proof formalism for first-order classical logic. Related to Herbrand’s Theorem and backtracking games in the style of Coquand, the forests assign witnessing information to quantifiers in a structurally minimal way, reducing a first-order sentence to a decidable propositional one. A similar formalism ‘expansion tree proofs’ was presented by Miller, but not given a method of composition. The present treatment adds a notion of cut, and investigates the possibility of composing forests via cut-elimination. Cut-reduction steps take the form of a rewrite relation that arises from the structure of the forests in a natural way. Yet reductions are intricate, and initially not well-behaved: from perfectly ordinary cuts, reduction may reach unnaturally configured cuts that may not be reduced. Cutelimination is shown using a modified version of the rewrite relation, inspired by the game-theoretic interpretation of the forests, for which weak normalisation is shown, and strong normalisation is conjectured. In addition, by a more intricate argument, weak normalisation is also shown for the original reduction relation.
Supervisor: Simpson, Alex ; Longley, John Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: proof theory ; canonical proof ; Herbrand’s theorem ; classical logic ; game semantics ; backtracking games ; cut-reduction ; cut-elimination