Use this URL to cite or link to this record in EThOS:
Title: Energy transfer processes in supramolecular light-harvesting systems
Author: Stevens, Amy L.
ISNI:       0000 0004 2725 8220
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This dissertation attempts to understand how energy transfer in a molecular wire and a spherical organic assembly are affected by molecular structure. The molecular wire is a DNA-hybrid structure composed of a strand of thymine bases appended by a cyanine dye. Hydrogen bonded to each base is a naphthalene-derivative molecule. Using time-integrated photoluminescence and time-correlated single photon counting measurements, energy transfer from the naphthalene donors to the cyanine acceptors was confirmed, and its dependence on temperature and DNA-template length investigated. Donor-thymine bonding was disrupted at temperatures above about 25 degrees Celcius resulting in poor donor template decoration and low rates of energy transfer. Increasing numbers of donors attach to the scaffold, forming an orderly array, as the template length increases due to the stabilising effects of the donor-donor pi-stacking interactions. Conversely, modelled energy transfer rates fall as the scaffold length increases because of the longer donor-acceptor distances involved. Therefore, the energy transfer rate was greatest for a template built from 30 thymines. The spherical organic assemblies (nanoparticles) are formed by fast injection of a small volume of molecularly dissolved fluorene-derivative amphiphilic molecules into a polar solvent. The amphiphilic molecules contained either a naphthalene (donor) or a benzothiadiazole (acceptor) core. The donor-acceptor mixed nanoparticles resemble an amorphous polymer film and were modelled as such using the Foerster resonance energy transfer theory. The Foerster radii extracted from the measurements depends intricately on the donor-acceptor spectral overlap and distance. The latter effect was controlled by the stacking interactions between the molecules. Altering the morphology of the structural units is the key to optimising energy transfer in molecular structures. To achieve efficient organic molecule-based devices, the importance of this property needs to be fully appreciated and effectively exploited.
Supervisor: Laura, Herz Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Condensed Matter Physics ; condensed matter physics ; molecular wire ; spherical organic asssembly ; molecular structure ; DNA-hybrid structure ; time-integrated photoluminescence ; time-correlated single photon counting ; resonance energy transfer ; morphology