Use this URL to cite or link to this record in EThOS:
Title: Aerodynamics of wind turbines
Author: Horikiri, Kana
ISNI:       0000 0004 2725 1395
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
The study of rotor blade aerodynamic performances of wind tur- bine has been presented in this thesis. This study was focused on aero- dynamic effects changed by blade surface distribution as well as grid solution along the airfoil. The details of numerical calculation from Fluent were described to help predict accurate blade performance for comparison and discussion with available data. The direct surface curvature distribution blade design method for two-dimensional airfoil sections for wind turbine rotors have been dis- cussed with the attentions to Euler equation, velocity diagram and the factors which affect wind turbine performance and applied to design a blade geometry close to an existing wind turbine blade, Eppler387, in order to argue that the blade surface drawn by direct surface curvature distribution blade design method contributes aerodynamic efficiency. The FLUENT calculation of NACA63-215V showed that the aero- dynamic characteristics agreed well with the available experimental data at lower angles of attack although it was discontinuities in the surface curvature distributions between 0.7 and 0.8 in x/c. The dis- continuities were so small that the blade performance could not be affected. The design of Eppler 387 blade performed to reduce drag force. The discontinuities of surface distributionmatched the curve of the pressure coefficients. It was found in the curvature distribution that the leading edge pressure side had difficulties to connect to Bezier curve and also the trailing edge circle was never be tangent to the lines of trailing edge pressure and suction sides due to programming difficulties.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Engineering