Use this URL to cite or link to this record in EThOS:
Title: Fluctuation-driven phase reconstruction at itinerant ferromagnetic quantum critical points
Author: Karahasanovic, Una
ISNI:       0000 0004 2722 2519
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
The formation of new phases close to itinerant electron quantum critical points has been observed experimentally in many compounds. We present a unified analytical model that explains the emergence of new types of phases around itinerant ferromagnetic quantum critical points. The central idea of our analysis is that certain deformations of the Fermi surface enhance the phase-space available for low-energy quantum fluctuations and so self-consistently lower the free energy. Using this quantum order-by-disorder mechanism, we find instabilities towards the formation of a spiral ferromagnet and spin-nematic phase close to an itinerant ferromagnetic quantum critical point. Further, we employ the quantum order-by-disorder mechanism to describe the partially ordered phase of MnSi. Using the simplest model of a Stoner-like helimagnetic transition, we show that quantum fluctuations naturally lead to the formation of an unusual phase near to the putative quantum critical point that shares many of the observed features of the partially ordered phase in MnSi. In particular, we predict an angular dependence of neutron scattering that is in good agreement with neutron-scattering data.
Supervisor: Green, Andrew George Sponsor: ORS ; EPSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Condensed matter theory ; Quantum criticality