Use this URL to cite or link to this record in EThOS:
Title: Modelling land use changes in Swat, Pakistan : spatial and temporal dynamics of land use change in Swat (1968-2007) : a Hindu Kush Himalayan region of Pakistan
Author: Qāsim, Muḥammad
ISNI:       0000 0004 2718 6386
Awarding Body: University of Leeds
Current Institution: University of Leeds
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Swat is part of the high mountain Hindu-Kush Himalayan region of Pakistan, with diverse biophysical and socio-economic characteristics. The region is endowed with many fragile and fragmented ecosystems, where land use and land cover changes have accelerated processes with irreversible effects on ecosystems. The thesis aims to; 1) find evidence of land use and cover change in the context of very disparate accounts on the state of forest resources in Pakistan, and particularly in Swat; 2) analyze the drivers of change and model the impact of geophysical factors on land use change; and 3) to identify the socioeconomic driving foreces ofland use change and to reflect on governance and policy failures and discuss potential policy options for conserving forests given these trends. To achieve our aims we used remote sensing and GIS for temporal analysis of land use and land cover change for the years 1968, 1990 and 2007, and for analyzing the geophysical and socioeconomic driving forces behind these changes we used logistic regression, test statistics, household surveys and expert interviews. Based on remote sensing and GIS we could provide clear evidence for fragmentation and deforestation; which is contrary to official Pakistani sources. In high altitude ecosystem the forest area decreased by 30.5%, with 11.4% deforestation due to agricultural expansion; in the mid-elevation zone, agriculture expanded by 70.3% and forests decreased by 49.7%; and in the lower altitudes agriculture expansion was 129.9% consuming 31. 7% of the forest areas over the 40 years study period. Binomial logistic regression analysis of the geophysical factors showed that III the more vulnerable high altitude ecosystems, despite accessibility problems, agriculture expansion has been a significant factor mainly driven by off-season vegetable production. In the lower altitudes agriculture expansion on forested areas was mainly explained by proximity to main roads and markets. Similarly expansion of smallholder agriculture and built up areas in the three zones were explained by proximity to water sources, slope, aspect and distance to settlements. Overall, various degrees of population pressure combined with improved access to infrastructure and markets lead to various degrees of agricultural expansion and intensification as well as extension of built up land. This was combined with institutional shortcomings especially with regards to contested property rights and ineffectual governmental interference; For sustainable livelihood agricultural production could be enhanced through conservation of traditional crops diversity (instead of predominance of off-season vegetables) and scientific input enabling improvement in traditional soil conservation and fertility management to reduce the risks of agriculture abandonment on steep slopes in the long-term. Exploration of alternate resources of fuel and energy, coupled with strategic reforestation programmes can bea positive step to minimize forest degradation. Apart from that a carefully crafted reform program is required including the strengthening of property rights, provisions for communal management and market based incentives, depending on the social, economic, and ecological characteristics of the different zones under consideration. Only with such policies in place the current rapid rate of deforestation can be avoided and sustainable resource use be ensured.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available