Use this URL to cite or link to this record in EThOS:
Title: Environmentally friendly packaging materials from renewable resources as alternatives for oil-based polymers
Author: Silva, Kodikara Manjula Dilkushi
ISNI:       0000 0004 2724 8057
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Nearly 60 m tonnes of waste is produced annually in Europe from “plastic packaging” engendering significant challenges for legislative controls and minimisation of environmental impact. There is an increasing demand for biodegradable packaging, which can be disposed of with minimum environmental impact, but the growing market is still in its infancy predominantly due to a lack of materials having environmental, practical and economic suitability. This research project dealt with some processing challenges of environmentally friendly packaging materials from renewable resources, as a long term solution to mitigate some issues associated with oil based plastic packaging. In this work, novel Polylactic acid (PLA) and starch based composites were developed with the requisite technical properties to fill the gap in the food packaging and cosmetic packaging industry. It was found that starch can be incorporated in a PLA matrix at the 10% level without difficulty in processing in the presence of 2% methyldiphenyl diisocyante. The blend shows properties similar to pure PLA. It was also found that the elongation at break and impact properties of PLA can be increased remarkably by the addition of a biostrength impact modifier. Furthermore, mixing of PLA and starch in the blend is efficient when the PLA particle size is reduced. It was also found that flexible and tougher PLA/starch blend pellets, that can be injection moulded, can be produced by an extrusion process with a range of additives. Each additive has a maximum level that exhibits optimum properties. The blends also established that 15% starch can be incorporated into the PLA matrix to reduce the cost without any processing difficulties. Encouragingly, the presence of an impact modifier in the PLA/starch blends has shown more desirable properties. Furthermore, the mechanical properties of the pellets exposed to increased residence time in the injection moulding barrel and of the test specimens stored for 9 months at 21ºC were also satisfactory for the new blend. The overall results exhibited some attractive properties in the tri blend system, which can be easily adopted by the plastics industry for development of an injection moulded product within the scope of applications such as dry food packaging or cosmetic packaging. A further finding of this project is that biodegradation under a home composting environment can be improved by incorporating starch and certain other modifiers into PLA.
Supervisor: Withnall, R. ; Tarverdi, K. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Bio materials ; Poly lactc acid ; Extrusion and injection moulding ; Characterisation of composites ; Poly lactic acid and starch composites