Use this URL to cite or link to this record in EThOS:
Title: The assembly and structure of self-assembling peptides : molecular to supramolecular
Author: Morris, Kyle
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Self-assembling molecules are central to a plethora of processes found in nature, biotechnology and even disease. The importance of the non-covalent interaction of monomers to the formation of fibrillar assemblies is evident in the repeated use of this mechanism throughout nature, from essential cellular processes such as the formation of the cytoskeleton to the production of silk. Further, it has been recognised in the last two decades that a self-assembly mechanism, that is the formation of amyloid, underpins the pathology of protein misfolding diseases; it is therefore essential to dissect these mechanisms. Despite recent technological and model system developments, self-assembling molecules remain challenging to investigate. Using combined structural and biophysical characterisations of penta- and hexa-peptide self-assembling model systems these investigations shed further light on the structure of amyloid-like fibrils. The elucidation of the structures of these fibrillar systems not only has implications for disease but also makes them well placed for consideration for biotechnological applications. In reflecting upon how cross-ß structural architectures can be organised in the fibrillar state, a molecular and supramolecular model of fibrils formed by a fragment of !-synuclein is reported. The fibrils are found to consist of a novel and elaborate cross-ß architecture that leads to a helical supramolecular assembly spanning length scales previously unobserved for such a system. Where self-assembly is a useful route to supramolecular structure formation, the use of low molecular weight gelator (LMWG) peptides to create fibrillar structures with defined material properties is also explored. The complex link between molecular structure, self-assembled architecture, fibril formation, fibril interaction and ultimately bulk material properties is described. It is found that the determinants of self-assembly are distinct from the determinants of gelation and so future LMWG design will have to consider both individually. This work presents methodological advances in the characterisation of self-assembled structures. The investigations presented here have relevance for disease related processes but also to the technological use of these systems as materials. Finally, this work emphasises the beauty of the extravagant, yet elegant connection between molecular interaction and supramolecular selfassembly.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QD0415 Biochemistry