Use this URL to cite or link to this record in EThOS:
Title: Influence of the precipitate size on the deformation mechanisms in two nickel-base superalloys
Author: Knoche, Elisabeth Marie
ISNI:       0000 0004 2718 8138
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
The polycrystalline nickel-base superalloys RR1000 and Udimet 720Li (U720Li) were developed for turbine disc applications. These alloys contain a higher volume fraction of the ordered γ' phase (close to 50%) when compared to previous generation alloys (~ 25%) in order to ensure that they retain high strength at operating temperatures exceeding 700°C. The increased percentage of precipitates in the material leads to higher levels of constraint between matrix and the precipitates, and this will have consequences for the deformation mechanisms of the aggregate. It is therefore important to understand how the increased volume fraction of precipitates affects the deformation behaviour of the material. This is not only crucial for the design of the optimum microstructure, but also for lifing models, which predict the lifetime of a component. It is the aim of the present work to improve the understanding of the deformation behaviour of these alloys by focussing on the influence of the γ' precipitate size. These alloys usually comprise a complex trimodal γ' size distribution, which complicates studies on the dependence of the deformation behaviour on the precipitate size. Hence, simplified model microstructures were generated here with a unimodal γ' size distribution. The model microstructures were subjected to in-situ loading experiments with neutron diffraction at temperatures of 20°C, 500°C and 750°C. Neutron diffraction measurements during loading revealed the elastic lattice strain response of both the γ and the γ' phases, which can indicate changes in their respective deformation behaviour. These measurements showed a load transfer from γ to γ' for some test conditions, which indicated that γ was able to deform with noticeably less deformation in the γ' phase. With a larger γ' precipitate size and/or higher test temperature, the tendency for load transfer increased. A post-mortem analysis of the deformed microstructures using advanced electron microscopy techniques (EBSD, ECCI, TEM) showed that shearing of the γ' precipitates dominated the deformed microstructures at 20°C and 500°C and was also observed after deformation at 750°C. Deformation was less localised in the microstructures with large γ' precipitates, which might be correlated with the increased trend for load transfer. The onset of multiple slip or the activation of Orowan looping as an additional deformation mechanism are suggested as possible explanations for these observations.
Supervisor: Preuss, Michael; Quinta Da fonseca, Joao Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Deformation mechanisms ; nickel-base superalloy