Use this URL to cite or link to this record in EThOS:
Title: Exploring novel functionalities in oxide ion conductors with excess oxygen
Author: Zhang, Yaoqing
ISNI:       0000 0004 2720 6738
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Functional materials, particularly metal oxides, have been the focus of much attention in solid state chemistry for many years and impact every aspect of modern life. The approach adopted in this thesis to access desirable functionality for enhanced fundamental understanding is via modifying existing materials by deploying reducing synthetic procedures. This work spans several groups of inorganic crystalline materials, but is unified by the development of new properties within host compounds of particular relevance to solid oxide fuel cell technology, which allow interstitial oxide ion conduction at elevated temperatures. The Ca₁₂Al₁₄O₃₂e₂ electride was successfully synthesized by replacing the mobile extra-framework oxygen ions with electrons acting as anions. The high concentration of electrons in the C12A7 electride gives rise to an exceptionally high electronic conductivity of up to 245 S cm⁻¹ at room temperature. Making use of the high density of electrons in Ca₁₂Al₁₄O₃₂e₂ electride, the strong N-N bonds in N₂ was found to be broken when heating Ca₁₂Al₁₄O₃₂e₂ in a N₂ atmosphere. A reaction between silicate apatites and the titanium metal yielded another completely new electride material La₉.₀Sr₁.₀(SiO₄)₆O₂.₄e₀.₂ which was found to be a semiconductor. To fully understand the role of oxygen interstitials in silicate apatites, high-resolution transmission electron microscopy (HRTEM) was employed as the main technique in probing how the oxygen nonstoichiometry is accommodated at the atomic level. Atomic-resolution imaging of interstitial oxygen in La₉.₀Sr₁.₀(SiO₄)₆O₂.₅ proved to be a success in this thesis. Substitution of oxygen in 2a and interstitial sites with fluoride ions in La[subscript(8+y)]Sr[subscript(2- z)](SiO₄)₆O[subscript(2+(3y-2z)/2)] (0
Supervisor: Irvine, John T. S. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Green energy ; Solid Oxide Fuel Cell ; Oxide ion conductor ; Functional oxide materials ; HRTEM ; C12A7 ; Apatite ; Electride ; QD181.O1Z5 ; Electric conductors ; Metallic oxides--Electric properties ; Reduction (Chemistry) ; Solid oxide fuel cells ; Superionic conductors