Use this URL to cite or link to this record in EThOS:
Title: Influenza A viruses and PI3K signalling
Author: Hale, Benjamin G.
ISNI:       0000 0004 2716 4208
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Access from Institution:
The influenza A virus non-structural (NS1) protein is multifunctional, and during virus-infection NS1 interacts with several factors in order to manipulate host-cell processes. This study reports that NS1 binds directly to p85β, a regulatory subunit of phosphoinositide 3-kinase (PI3K), but not to the related p85α. Expression of NS1 was sufficient to activate PI3K and cause the phosphorylation of a downstream mediator of PI3K signalling, Akt. However, in virus-infected MDCK cells, the kinetics of Akt phosphorylation did not correlate with NS1 expression, and suggested that negative regulation of this signalling pathway occurs subsequent to ~8h post-infection. Mapping studies showed that the NS1:p85β interaction is primarily mediated by the NS1 C-terminal domain and the p85β inter-SH2 (Src homology 2) domain. Additionally, the highly conserved tyrosine at residue 89 (Y89) of NS1 was found to be important for binding and activating PI3K in a phosphorylation-independent manner. The inter-SH2 domain of p85β is a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. As NS1 does not displace p110 from the inter-SH2 domain, a model is proposed whereby NS1 forms an active heterotrimeric complex with PI3K, and disrupts the ability of p85β to control p110 function. Biological studies revealed that a mutant influenza A virus (Udorn/72) expressing NS1 with phenylalanine substituted for tyrosine-89 (Y89F) exhibited a small-plaque phenotype, and grew more slowly in MDCK cells than wild-type virus. Unexpectedly, another mutant influenza A virus strain (WSN/33) expressing NS1-Y89F was not attenuated in MDCK cells, yet appeared to be less pathogenic than wild-type in vivo. Overall, these data indicate a role for NS1-mediated PI3K activation in efficient influenza A virus replication. The potential application of this work to the design of novel anti-influenza drugs and vaccine production is discussed.
Supervisor: Randall, R. E. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Influenza ; Virus ; PI3K ; Akt ; Vaccine ; Anti-virals ; QR470.H2 ; Influenza A virus ; Cellular signal transduction ; Phosphoinositides ; Viruses--Reproduction