Use this URL to cite or link to this record in EThOS:
Title: Advanced risk management in offshore terminals and marine ports
Author: Mokhtari, Kambiz
ISNI:       0000 0004 2716 4558
Awarding Body: Liverpool John Moores University
Current Institution: Liverpool John Moores University
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
This research aims to propose a Risk Management (RM) framework and develop a generic risk-based model for dealing with potential hazards and risk factors associated with offshore terminals' and marine ports' operations and management. Hazard identification was conducted through an appropriate literature review of major risk factors of these logistic infrastructures. As a result in the first phase of this research a Fuzzy Analytical Hierarchal Process (FAHP) method was used for determining the relative weights of the risk factors identified via the literature review. This has led to the development of a generic risk -based model which can help related industrial professionals and risk managers assess the risk factors and develop appropriate strategies to take preventive/corrective actions for mitigation purposes, with a view of maintaining efficient offshore terminals' and marine ports' operations and management. In the second phase of the research the developed risk-based model incorporating Fuzzy Set Theory (FST), an Evidential Reasoning (ER) approach and the IDS software were used to evaluate the risk levels of different ports in real situations using a case study. The IDS software based on an ER approach was used to aggregate the previously determined relative weights of the risk factors with the new evaluation results of risk levels for the real ports. The third phase of the research made use of the Cause and Consequence Analysis (CCA) including the Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) under a fuzzy environment, to analyse in detail the most significant risk factors determined from the first phase of the research, using appropriate case-studies. In the fourth phase of the research an individual RM strategy was tailored and implemented on the most significant risk factor identified previously. In the last phase of the research and in order to complete the RM cycle, the best mitigation strategies were introduced and evaluated in the form of ideal solutions for mitigating the identified risk factors. All methods used in this research have quantitative and qualitative nature. Expert judgements carried out for gathering the required information accounted for the majority of data collected. The proposed RM framework can be a useful method for managers and auditors when conducting their RM programmes in the offshore and marine industries. The novelty of this research can help the Quality, Health, Safety, Environment and Security (QHSES) managers, insurers and risk managers in the offshore and marine industries investigate the potential hazards more appropriately if there is uncertainty of data sources. In this research with considering strategic management approaches to RM development the proposed RM framework and risk based model contribute to knowledge by developing and evaluating an effective methodology for future use of the RM professionals.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: HD61 Risk Management ; HE Transportation and Communications ; TC Hydraulic engineering. Ocean engineering