Use this URL to cite or link to this record in EThOS:
Title: Assessment of high resolution SAR imagery for mapping floodplain water bodies : a comparison between Radarsat-2 and TerraSAR-X
Author: Al-Ali, Mohamed Saif Mohamed Qasim
ISNI:       0000 0004 2712 9496
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Flooding is a world-wide problem that is considered as one of the most devastating natural hazards. New commercially available high spatial resolution Synthetic Aperture RADAR satellite imagery provides new potential for flood mapping. This research provides a quantitative assessment of high spatial resolution RADASAT-2 and TerraSAR-X products for mapping water bodies in order to help validate products that can be used to assist flood disaster management. An area near Dhaka in Bangladesh is used as a test site because of the large number of water bodies of different sizes and its history of frequent flooding associated with annual monsoon rainfall. Sample water bodies were delineated in the field using kinematic differential GPS to train and test automatic methods for water body mapping. SAR sensors products were acquired concurrently with the field visits; imagery were acquired with similar polarization, look direction and incidence angle in an experimental design to evaluate which has best accuracy for mapping flood water extent. A methodology for mapping water areas from non-water areas was developed based on radar backscatter texture analysis. Texture filters, based on Haralick occurrence and co-occurrence measures, were compared and images classified using supervised, unsupervised and contextual classifiers. The evaluation of image products is based on an accuracy assessment of error matrix method using randomly selected ground truth data. An accuracy comparison was performed between classified images of both TerraSAR-X and Radarsat-2 sensors in order to identify any differences in mapping floods. Results were validated using information from field inspections conducted in good conditions in February 2009, and applying a model-assisted difference estimator for estimating flood area to derive Confidence Interval (CI) statistics at the 95% Confidence Level (CL) for the area mapped as water. For Radarsat-2 Ultrafine, TerraSAR-X Stripmap and Spotlight imagery, overall classification accuracy was greater than 93%. Results demonstrate that small water bodies down to areas as small as 150m² can be identified routinely from 3 metre resolution SAR imagery. The results further showed that TerraSAR-X stripmap and spotlight images have better overall accuracy than RADARSAT-2 ultrafine beam modes images. The expected benefits of the research will be to improve the provision of data to assess flood risk and vulnerability, thus assisting in disaster management and post-flood recovery.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available