Use this URL to cite or link to this record in EThOS:
Title: Development of multiphase and multiscale mathematical models for thermal spray process
Author: Kamnis, Spyros
ISNI:       0000 0004 2709 8589
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Access from Institution:
High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: Systems Engineering ; Engineering not elsewhere classified