Use this URL to cite or link to this record in EThOS:
Title: Intelligent real-time decision support systems for road traffic management : multi-agent based fuzzy neural networks with a GA learning approach in managing control actions of road traffic centres
Author: Almejalli, Khaled A.
ISNI:       0000 0004 2707 2290
Awarding Body: University of Bradford
Current Institution: University of Bradford
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
The selection of the most appropriate traffic control actions to solve non-recurrent traffic congestion is a complex task which requires significant expert knowledge and experience. In this thesis we develop and investigate the application of an intelligent traffic control decision support system for road traffic management to assist the human operator to identify the most suitable control actions in order to deal with non-recurrent and non-predictable traffic congestion in a real-time situation. Our intelligent system employs a Fuzzy Neural Networks (FNN) Tool that combines the capabilities of fuzzy reasoning in measuring imprecise and dynamic factors and the capabilities of neural networks in terms of learning processes. In this work we present an effective learning approach with regard to the FNN-Tool, which consists of three stages: initializing the membership functions of both input and output variables by determining their centres and widths using self-organizing algorithms; employing an evolutionary Genetic Algorithm (GA) based learning method to identify the fuzzy rules; tune the derived structure and parameters using the back-propagation learning algorithm. We evaluate experimentally the performance and the prediction capability of this three-stage learning approach using well-known benchmark examples. Experimental results demonstrate the ability of the learning approach to identify all relevant fuzzy rules from the training data. A comparative analysis shows that the proposed learning approach has a higher degree of predictive capability than existing models. We also address the scalability issue of our intelligent traffic control decision support system by using a multi-agent based approach. The large network is divided into sub-networks, each of which has its own associated agent. Finally, our intelligent traffic control decision support system is applied to a number of road traffic case studies using the traffic network in Riyadh, in Saudi Arabia. The results obtained are promising and show that our intelligent traffic control decision support system can provide an effective support for real-time traffic control.
Supervisor: Dahal, Keshav P. ; Hossain, M. Alamgir Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Road traffic management and control ; Decision support system ; Fuzzy rule identification ; Fuzzy neural network ; Genetic algorithm ; Multi-agent systems ; Non-recurrent traffic congestion ; Riyadh, Saudi Arabia ; Real-time traffic control