Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543561
Title: Utrophin upregulation and microRNAs : two avenues of Duchenne muscular dystrophy therapy research
Author: Bareja, Akshay
ISNI:       0000 0004 2706 9294
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Characterized by the severe progressive wastage of skeletal muscle, Duchenne muscular dystrophy (DMD) is a crippling X-linked recessive disease that is caused by the absence of the protein dystrophin. This thesis aimed to critically evaluate the potential of different therapeutic options to combat this disease. Utrophin is a paralogue of dystrophin. The Fiona mouse is an mdx (dystrophin-deficient) transgenic mouse that overexpresses the full-length utrophin protein in skeletal muscle, and various studies have shown that it does not display a dystrophic phenotype. However, these studies have only been performed on sedentary mice. In this work it is demonstrated that utrophin’s protective effect is partially diminished after a sustained period of exercise-induced stress, highlighting for the first time a functional difference between dystrophin and utrophin. This thesis also presents results of two mdx mouse drug trials testing the ameliorative effects of the administration of the drugs GW501516 and C1100, which show that treatment with both drugs results in partial amelioration of the dystrophic phenotype. GW501516 administration results in a beneficial fast-to-slow fibre type switch and an in vivo increase in utrophin protein levels. We have also shown that C1100 treatment results in a significant increase in utrophin A promoter activity in vitro, and the mechanism of action of this drug on this promoter has been deciphered. The global dysregulation of microRNAs in skeletal muscle of mdx and dko (dystrophin- and utrophin-deficient) mice was evaluated by microarray analysis to identify microRNAs involved in the dystrophic pathological cascades. The results of detailed expression analyses of miR-31, miR-206 and miR-503 are presented, and two therapeutically-relevant predicted targets of miR-503 were validated. Overall, this thesis evaluates the potential of different and possibly complementary therapeutic options to combat DMD.
Supervisor: Davies, Kay Elizabeth Sponsor: Clarendon Fund
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.543561  DOI: Not available
Keywords: Biology ; microRNA ; miRNA ; utrophin ; Duchenne ; myopathy
Share: