Use this URL to cite or link to this record in EThOS:
Title: Cavitation-enhanced delivery of therapeutics to solid tumors
Author: Rifai, Bassel
ISNI:       0000 0004 2706 6819
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Poor drug penetration through tumor tissue has emerged as a fundamental obstacle to cancer therapy. The solid tumor microenvironment presents several physiological abnormalities which reduce the uptake of intravenously administered therapeutics, including leaky, irregularly spaced blood vessels, and a pressure gradient which resists transport of therapeutics from the bloodstream into the tumor. Because of these factors, a systemically administered anti-cancer agent is unlikely to reach 100% of cancer cells at therapeutic dosages, which is the efficacy required for curative treatment. The goal of this project is to use high-intensity focused ultrasound (HIFU) to enhance drug delivery via phenomena associated with acoustic cavitation. ‘Cavitation’ is the formation, oscillation, and collapse of bubbles in a sound field, and can be broadly divided into two types: ‘inertial’ and ‘stable’. Inertial cavitation involves violent bubble collapse and is associated with phenomena such as heating, fluid jetting, and broadband noise emission. Stable cavitation occurs at lower pressure amplitudes, and can generate liquid microstreaming in the bubble vicinity. It is the combination of fluid jetting and microstreaming which it is attempted to explore, control, and apply to the drug delivery problem in solid tumors. First, the potential for cavitation to enhance the convective transport of a model therapeutic into obstructed vasculature in a cell-free in vitro tumor model is evaluated. Transport is quantified using post-treatment image analysis of the distribution of a dye-labeled macromolecule, while cavitation activity is quantified by analyzing passively recorded acoustic emissions. The introduction of exogenous cavitation nuclei into the acoustic field is found to dramatically enhance both cavitation activity and convective transport. The strong correlation between inertial cavitation activity and drug delivery in this study suggested both a mechanism of action and the clinical potential for non-invasive treatment monitoring. Next, a flexible and efficient method to simulate numerically the microstreaming fields instigated by cavitating microbubbles is developed. The technique is applied to the problem of quantifying convective transport of a scalar quantity in the vicinity of acoustically cavitating microbubbles of various initial radii subject to a range of sonication parameters, yielding insight regarding treatment parameter choice. Finally, in vitro and in vivo models are used to explore the effect of HIFU on delivery and expression of a biologically active adenovirus. The role of cavitation in improving the distribution of adenovirus in porous media is established, as well as the critical role of certain sonication parameters in sustaining cavitation activity in vivo. It is shown that following intratumoral or intravenous co-injection of ultrasound contrast agents and adenovirus, both the distribution and expression of viral transgenes are enhanced in the presence of inertial cavitation. This ultrasound-based drug delivery system has the potential to be applied in conjunction with a broad range of macromolecular therapeutics to augment their bioavailability for cancer treatment. In order to reach this objective, further developmental work is recommended, directed towards improving therapeutic transducer design, using transducer arrays for treatment monitoring and mapping, and continuing the development of functionalized monodisperse cavitation nuclei.
Supervisor: Coussios, Constantin-C. ; Ventikos, Yiannis Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Numerical analysis ; Physics and CS ; Biomedical engineering ; Image understanding ; Mathematical modeling (engineering) ; Mechanical engineering ; Medical Engineering ; biomedical acoustics ; cavitation ; monitoring ; macromolecule transport ; fluid dynamics ; Reynolds averaging ; drug delivery ; tumor microenvironment ; ultrasound therapy ; virotherapy ; oncolytic adenovirus ; tumor phantom