Use this URL to cite or link to this record in EThOS:
Title: Thermalisation and temporal relaxation in closed quantum systems
Author: Genway, Sam
ISNI:       0000 0004 2713 5052
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis approaches questions concerning the thermalisation of subsystems of closed quantum systems, prepared in pure states of definite energy but far from equilibrium, under exact unitary evolution. Taking motivation from experiments in the field of ultracold atoms, an extensive study of relaxation to a thermal state in the Hubbard model is presented. The study of small local subsystems in Hubbard-model lattice clusters has led to some interesting findings. Explored are the effects of interactions between fermions, the initial-state energy and the energy uncertainty in the initial state and their effects on relaxation dynamics and thermalisation. The most significant finding is that while subsystem thermalisation is seen for a large range of subsystem-bath coupling strengths, the temporal form of the relaxation varies markedly from exponential decay for weak couplings with a crossover to Gaussian behaviour with increased coupling strength. This is found to hold more generally for random couplings between the subsystem and bath and for bosons as well as fermions, thus demonstrating generality. As well as being demonstrated numerically, this behaviour is derived for a generic class of bi-partite quantum systems which may be described with the use of random matrices. A Brownian motion model is employed to show the exponential to Gaussian crossover when the subsystem-bath coupling matrix takes a banded form. This result agrees well with numerical Hubbard-model results, and yields identical results at short times to those from straight-forward perturbative methods. It is demonstrated that the non-Markovian Gaussian behaviour should also be observable in the limit of macroscopic baths.
Supervisor: Ho, Andrew ; Lee, Derek Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral