Use this URL to cite or link to this record in EThOS:
Title: Lead free solders for aerospace applications
Author: Farinha Marques, Vitor Manuel
ISNI:       0000 0004 2710 6411
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
The factors controlling the reliability of Pb-free solders when subject to thermomechanical regimes relevant to the harsh aerospace environment have been studied. Ball grid array (BGAs) typical of microelectronic devices have been manufactured in-house and subjected to isothermal ageing and thermal cycling. The BGAs comprised both Cu and Ni-Au metallizations, Pb-free Sn-Ag-Cu 400 and 600μm solder balls, FR4 and Al2O3 boards, and included circuits to measure resistance changes due to damage in the joints during thermal cycling. Microstructural evolution within the solders balls and complex interfacial reactions were studied in all configurations using various types of electron microscopy. The mechanical properties of the different phases formed within solder joints were studied using nanoindentation at room and elevated temperatures up to 175°C for the first time. Intermetallic compounds (IMCs) were stiff, hard and brittle with very low creep rates, while the softer primary Sn, eutectic regions and Cu metallization readily underwent creep. Two-dimensional finite element analysis (FEA) of nanoindentation was used to understand better the physical meaning of nanoindentation creep data. Reliability experiments comprised both thermal cycling and FEA of BGAs. The difference in coefficient of thermal expansion (CTE) in the BGA materials caused interfacial fatigue damage in the solder joints, which was detected primarily at the solder/metallization interface of the outermost, most strained solder joint. Accumulated creep strain per cycle at this interface was evaluated using 3D FEA of the stress-strain state of the BGA and results calibrated against experimental BGA mean lifetimes using the Coffin-Mason relationship. Nanoindentation combined with FEA has been shown to be a viable route for the rapid assessment of creep performance and lifetime in lead-free solders under aerospace thermal cycles.
Supervisor: Grant, Patrick ; Johnston, Colin Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Alloys ; Fatigue ; Materials modelling ; Materials processing ; Metallurgy ; Microscopy and microanalysis ; Physical metallurgy ; Electronics ; Structure of interfaces ; Pb free solders ; aerospace ; nanoindentation ; reliability ; microstructure