Use this URL to cite or link to this record in EThOS:
Title: Mixed signal VLSI circuit implementation of the cortical microcircuit models
Author: Wijekoon, Jayawan
ISNI:       0000 0004 2708 5120
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis proposes a novel set of generic and compact biologically plausible VLSI (Very Large Scale Integration) neural circuits, suitable for implementing a parallel VLSI network that closely resembles the function of a small-scale neocortical network. The proposed circuits include a cortical neuron, two different long-term plastic synapses and four different short-term plastic synapses. These circuits operate in accelerated-time, where the time scale of neural responses is approximately three to four orders of magnitude faster than the biological-time scale of the neuronal activities, providing higher computational throughput in computing neural dynamics. Further, a novel biological-time cortical neuron circuit with similar dynamics as of the accelerated-time neuron is proposed to demonstrate the feasibility of migrating accelerated-time circuits into biological-time circuits. The fabricated accelerated-time VLSI neuron circuit is capable of replicating distinct firing patterns such as regular spiking, fast spiking, chattering and intrinsic bursting, by tuning two external voltages. It reproduces biologically plausible action potentials. This neuron circuit is compact and enables implementation of many neurons in a single silicon chip. The circuit consumes extremely low energy per spike (8pJ). Incorporating this neuron circuit in a neural network facilitates diverse non-linear neuron responses, which is an important aspect in neural processing. Two of the proposed long term plastic synapse circuits include spike-time dependent plasticity (STDP) synapse, and dopamine modulated STDP synapse. The short-term plastic synapses include excitatory depressing, inhibitory facilitating, inhibitory depressing, and excitatory facilitating synapses. Many neural parameters of short- and long- term synapses can be modified independently using externally controlled tuning voltages to obtain distinct synaptic properties. Having diverse synaptic dynamics in a network facilitates richer network behaviours such as learning, memory, stability and dynamic gain control, inherent in a biological neural network. To prove the concept in VLSI, different combinations of these accelerated-time neural circuits are fabricated in three integrated circuits (ICs) using a standard 0.35 µm CMOS technology. Using first two ICs, functions of cortical neuron and STDP synapses have been experimentally verified. The third IC, the Cortical Neural Layer (CNL) Chip is designed and fabricated to facilitate cortical network emulations. This IC implements neural circuits with a similar composition to the cortical layer of the neocortex. The CNL chip comprises 120 cortical neurons and 7 560 synapses. Many of these CNL chips can be combined together to form a six-layered VLSI neocortical network to validate the network dynamics and to perform neural processing of small-scale cortical networks. The proposed neuromorphic systems can be used as a simulation acceleration platform to explore the processing principles of biological brains and also move towards realising low power, real-time intelligent computing devices and control systems.
Supervisor: Dudek, Piotr Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: VLSI ; neuromorphic ; neocortex ; biological plausible ; silicon neuron ; neural network ; neuron ; synapse ; accelerated-time neural circuit ; biomimetic