Use this URL to cite or link to this record in EThOS:
Title: Neural basis of a visuo-motor transformation in the fly
Author: Huston, Stephen
ISNI:       0000 0004 2711 733X
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2006
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
How the outputs of populations of sensory neurons are used by motor systems to generate appropriate behaviour is a long standing question in neuroscience. I address this problem by studying a comparatively simple model system. In the fly, Neck Motor Neurons control gaze-stabilising head movements that occur during whole body rotations. These motor neurons receive several sensory inputs including one from well-characterized visual interneurons, Tangential Cells (TCs), which respond to panoramic image shifts induced during self-motion. In chapter one, I provide a general introduction to sensory-motor circuits and the flygaze-stabilisation system. In chapter two, I report that the visual receptive fields of Neck Motor Neurons are similar to those of the TCs. Using this result, I show an alignment between the coordinate systems used by the visual and the neck motor systems to process visual information. Thus, TCs encode visual inputs in a manner already closely matched to the requirements of the neck motor neurons, considerably facilitating the visual-motor transformation. In chapter three, I analyse the gating of neck motor neuron visual responses by convergent mechanosensory inputs from the halteres. Some neck motor neurons do not fire action potentials in response to visual stimuli alone, but they will in response to haltere movements. I show that visual stimuli produce sustained sub-threshold depolarisations in these neurons. These visual depolarisations increase the proportion of haltere-induced action potentials in neck motor neurons. Thus, visual inputs can only affect the spiking output if the halteres are moving. This simple mechanism could explain why flies only make visually induced head movements during walking or flight: behaviours that involve beating the halteres. By analysing how the outputs of a model sensory system are used, I have shown a novel alignment between sensory and motor neuron populations and a simple mechanism underlying multisensory fusion.
Supervisor: Krapp, Holger Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral