Use this URL to cite or link to this record in EThOS:
Title: The quantitative analysis of optical phase measurement and its application to the determination of corneal birefringence
Author: Si, Chen
ISNI:       0000 0004 2709 4406
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
In this thesis, a phase sensitive interferometer is successfully implemented to perform birefringent object surface-profile measurement, based on a polarisation adjustment approach. Using monochromatic light, a novel polarization interferometric method is developed, incorporating the birefringence technique and a waveplate. In our experiments, a birefringent wedge is designed for generating carrier fringes in the polariscope. Retardance is calculated from phase shifting using a phase matching technique. The accuracy of the method has been demonstrated to have an error of less than 0.02 radians. The accuracy and resolution quantitative analysis presented in this thesis can be used to determine accurately the phase-shifting interferometry for high-precision surface profile and bio-structure, such as fibre and collagen measurements with low cost. FFT technique and phase-stepping methods are described to determine birefringence within the cornea. The distribution of human corneal lamellar collagen is determined through a microscopic technique using the combination of a circular polariser and a quarter-wave retarder. A quantitative measure of corneal birefringence is achieved by phase unwrapping. The experimental findings of elliptic and hyperbolic populations of collagen fibrils may explain the optical phenomena of central corneal retardation with biaxial-like behaviour in more peripheral areas. A low cost, simple, and direct approach has been developed to make the required microscopic measurement. The traditional transmission system is improved by applying a reflection system with an LED light source and is suitable for the analysis of the birefringent cornea structures in vivo. A further instrument based upon a synthetic aperture approach has been created with the purpose of measuring the three dimensional birefringence structure of the cornea. The concept of the instrument is a combination of the parallax between individual lenses and the numerically generated planes of focus to visualise the phase structure.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC Physics ; QM Human anatomy