Use this URL to cite or link to this record in EThOS:
Title: Magnetic field control of ultracold atom-molecule collision
Author: Beyene, Musie
ISNI:       0000 0004 2709 051X
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
In this work we investigate the potential of controlling cold (O(K)−mK) and ultracold (mK-μK) atom-molecule collisions by tuning scattering states across Feshbach resonances using magnetic fields. We are interested in particular in the prospect of suppressing the often undesirable inelastic collisions. The He-O_2 system provides the vehicle for our study. We calculate bound and quasi-bound states of several isotopic combinations, including their Zeeman structure, to reveal the underlaying pattern for easier characterization of quasi-bound states in terms of rigorous and approximately good quantum numbers. These calculations also help us locate the fields at which zero-energy resonances will occur. Scattering calculations are then performed for collisions of 3^He and 4^He with {16}^O_2 at fixed (1 μK) energy but varying magnetic field. The field is varied to sweep the scattering state across resonance. At low and ultralow energies we enter the Wigner threshold regime where the S-partial wave dominates the wavefunction. The cross sections, and the real and imaginary parts of the scattering length, vary dramatically across resonance. Their profiles are used to analyze the resonances. In a highlight of our results we show that dramatic suppression of inelastic cross sections occur for 4^He-{16}^O_2 . The resonances are relatively wide (of order 100 Gauss), with suppression of inelastic scattering over a similarly wide range of fields and for temperatures ranging from 10 mK down to 1 μK. We conclude that under certain conditions it is possible to almost completely eliminate inelastic collisions. This is potentially very important for cooling techniques, such as evaporative and sympathetic cooling, that require efficient elastic cross sections. Suppression of inelastic collisions can not only increase thermalization efficiency but it can also result in longer trap-lifetimes by reducing transitions to untrapable states.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available