Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540866 Title: Subgroups of some (2, 3, n) triangle groups
Author: Stephenson, Philip Charles Robertson
ISNI:       0000 0004 2707 603X
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 1992
Availability of Full Text:
 Access from EThOS: Access from Institution:
Abstract:
As an abstract group, the (2,3,n) triangle group has the presentation mit _n = < x,y : x^2 = y^3 = (yx)^n = 1 > This thesis is concerned with subgroups of finite index in mit 9, mit _11 and mit 13. With a subgroup of finite index, u, in the (2,3,11) triangle group, we associate a quintuple of non-negative integers (u,p,e,f,g), with u 1 and 5u = 132(p - 1) + 33e + 44f + 60g. We show in Theorem 1.4.6 that each quintuple, satisfying the conditions, corresponds to a subgroup of mit 11. With a subgroup of finite index, u, in the (2,3,12) triangle group, we associate a quintuple of non-negative integers (u,p,e,f,g), with u 1 and 7u = 156(p - 1) + 39e + 52f + 72g. We show in Theorem 3.3.6 that each quintuple, satisfying the conditions, corresponds to a subgroup of mit 13. With a subgroup of finite index, u, in the (2,3,9) triangle group, we associate a sextuple of non-negative integers (u,p,e,f,g1,g3) with u 1, u = f (mod 3) and u = 36(p - 1) + 9e + 12f + 16g_1 + 12g_3. We show in Theorem 2,3,9 that each sextuple, satisfying the conditions, corresponds to a subgroup of mit 9 with the following exceptions: (a) (12n+ 9,0,1,0,0,n+ 3), V n 0 (b) (24,0,0,0,0,5) (c) (24,0,0,0,3,1) (d) (24,0,0,3,0,2) Coset diagrams are used extensively in the proofs, although to prove exception (a) for mit 9, we make use of Hauptmodul equations (see  and ). Computer programs were developed to generate all quintuples satisfying the relevant conditions for (2,3,110 subgroups for u 101, all quintuples satisfying the relevant conditions for (2,3,13) subgroups for u 110, and all sextuples satisfying the relevant conditions for (2,3,9) subgroups for u 38. These programs and their output are presented in the Appendices. We show in Theorem 1.2.2 that quintuples, which satisfy the relevant (2,3,11) conditions, exist for each u 99. We show in Theorem 2.2.1 that sextuples, which satisfy the relevant (2,3,9) conditions, exist for each u 36. We show in Theorem 3.2.1 that quintuples, which satisfy the relevant (2,3,13) conditions, exist for each u 104.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.540866  DOI: Not available
Keywords: QA Mathematics
Share: