Use this URL to cite or link to this record in EThOS:
Title: Catalytic hollow fibre membrane micro-reactors for energy applications
Author: Rahman, Mukhlis Bin A.
ISNI:       0000 0004 2709 828X
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
An asymmetric ceramic hollow fibre is proposed as a substrate for the development of a catalytic hollow fibre microreactor (CHFMR) and a catalytic hollow fibre membrane microreactor (CHFMMR). The ceramic substrate that is prepared using the phase inversion and sintering technique has a finger-like structure and a sponge-like region in the inner region and the outer surface respectively. The finger-like structure consists of thousands of conical microchannels distributed perpendicularly to the lumen of ceramic hollow fibres onto which a catalyst is impregnated using the sol-gel Pechini method to improve a catalytic reaction. To further enhance the catalytic reaction, a membrane has been incorporated on the outer layer of ceramic hollow fibre. This study focuses on the use of palladium (Pd) and palladium/silver (Pd/Ag) membranes to separate hydrogen from reaction zones in the water-gas shift (WGS) reactions and the ethanol steam reforming (ESR) respectively. In the development of CHFMMR, the fabrication of Pd and Pd/Ag membranes is carried out prior to the catalyst impregnation process to avoid the dissolution of catalyst into the plating solution due to the presence of ammonia and ethylenediaminetetraacetic acid (EDTA). The catalytic activity tests show that the CHFMR, that does not have the Pd membrane on its outer surface, improves the carbon monoxide (CO) conversion compared with its fixed-bed counterpart. The presence of conical microchannels is expected to enhance the activities of the catalyst in the substrate. The incorporations of Pd and Pd/Ag membranes on the outer layer of ceramic hollow fibres enable pure hydrogen to be produced in the shell-side for both the WGS reaction and the ESR. The CHFMMR is used to remove one of the products enabling the WGS reaction to favour the formation of product. It also facilitates the small amount of catalyst to be used to produce significant amount of hydrogen in the ESR.
Supervisor: Li, Kang Sponsor: Universiti Teknologi Malaysia ; Ministry of Higher Education Malaysia ; EPSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral